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Abstract—This paper describes a robotics system for popu-
lation density estimation of marine organisms and vision-based
algorithm for computing the associated population estimates.
We focus on benthic fauna, through the use of Seabed AUV
to collect benthic imagery, and then employ a support vector
machine (SVM) for automated analysis of these images to
estimate the population of the fauna of interest. The proposed
approach is a significant improvement over existing techniques
such as trawling, or manual inspection of images collected by
a towed vehicle.

We tested our proposed technique by first collecting benthic
image data using the Seabed AUV at Hannibal seamount in
Panama, and then predicting the counts of the crabs and squat
lobsters in the data. We compare our predictions with ground-
truth data from thousands of sample locations containing
manual counts estimated by a team of experts, and found that
our estimates have 94% precision and recall on held out test
data.
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I. INTRODUCTION

This paper considers estimation of the density of bottom
(benthic) subsea fauna, specifically crabs and squat lobsters,
using fully automated robotic sampling and vision-based
detection and density estimation. Our approach is based on
the analysis of image data from a robotic data collection
system.

Knowledge of the distribution and abundance of bottom
organisms is important for understanding their ecology, and
for protecting these organisms, e.g., for the design of marine
protected areas.

To better understand the ecology of bottom organisms, we
first need to have accurate population estimates for various
species. At the very minimum, we require estimates of
distribution and abundance. Current standard approaches for
computing these estimates includes catching the organisms,
or visually analyzing images. These approaches are labor
intensive and can damage the habitat. Moreover, the cost of
performing such a survey can be substantial.

Through the use of robotic systems, we believe that
an approach with lower environmental impact and perhaps
even improved accuracy can be developed. This entails two
critical functions: deployment of robotic systems to cover
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regions of interest on the sea floor, and the collection and
assessment of data regarding the population density and
prevalence of species of interest. Our long-term objective
is to develop autonomous robotic systems that can operate
in the ocean and collect and analyze such data on an ongoing
basis. In the interim, we are describing work in which an
autonomous underwater vehicle robot collects underwater
image data and the collected data is analyzed offline after
the end of the expedition. An image of the robot and a
successful set of target detections on the data collected by
the robot can be seen in Fig. 1.

Our work is based on the collection of video imagery
along a predetermined trajectory selected prior to the de-
ployment of the robot [1]. While some researchers, includ-
ing teams we have been associated with, have examined
autonomous real-time navigation, the depth and expense of
this deployment preclude that approach and the emphasis of
this paper is on the data analysis. We consider an automated
image processing system that computes population densities
of two species of interest (Galatheid crabs and squat lobsters)
using batch computation after the robot returns to the
surface.

In this paper, after a brief discussion of related research,
we consider the overall scope and nature of the data analysis
system being developed at Woods Hole, and how this
component relates to it. We then discuss our robotic platform
and the specifics of the data collection missions. Then we
describe our approach to vision-based population assessment
using filtering and machine learning. Finally, we present
results on data-driven parameter selection and an analysis
of experimental results and error rates.

II. RELATED WORK

A number of groups have considered the use of robotic
systems for shallow water as well as benthic exploration
and data collection. In prior work, we have deployed a small
vehicle for coral reef observation and data collection. Several
groups have developed and deployed vehicles that can make
close approaches to the ocean floor, coral reefs, or aquatic
structures [2], [3]. Close range observation of undersea
environments is challenging due not only to the logistic
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Figure 1. In this work we use the seabed robot (a) to collect benthic
imagery, and present an automated technique to enumerate fauna of interest
for the purpose of quantifying the health of a subsea ecosystem. Figure (b)
show an example of fauna detection, in this case of Galatheid crabs. The
green boxes indicate a patch that is detected as containing a crab.

challenges of marine deployment, but also because (a) the
propulsion systems for ocean-hardened vehicles may be
unsafe to operate close to fragile underwater environments;
(b) some devices have limited maneuverability; (c) it is
difficult for humans to produce pre-planned trajectories since
sensor feedback underwater is often poor, communications
are difficult and terrain models are rarely complete; (d)
inappropriate thrust can disturb sediments or marine species
thus interfering with the measurement process.

Beijbom et al [4] looked at coral image classification using
multi-scale color and texture filter banks at multiple scales.
They found that a careful selection of multi-scale filter
banks can outperform standard texture-only methods when
estimating coral coverage in the open ocean. While related
in spirit, that work focused on a rather different task where
the classification of high-quality images largely filled by a
single coral species was the task. In contrast, we consider
the entire robotics pipeline and focus on density estimates in
images where the target class(es) may only occupy a small
fraction of the overall image. Similarly, Bewley et al [5]
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tackled detection of seaweed species in sea floor images and
relied on local image features combined with a supervised
learning model.

Many authors have considered the issues of developing
stable AUVs for underwater data collection [6], [7], [8]. In
prior work, we have considered the use of a small portable
underwater vehicle for image processing tasks with high
levels of maneuverability [9], [10], [11]. This has included
automated coral identification from relatively low-resolution
imagery collected as the vehicle moves over shallow water
reefs. In contrast, the present paper addresses density esti-
mation on a different class of vehicles in much deeper water
and uses a richer representation of image content to allow a
higher level of performance.

Several authors have examined the assessment of envi-
ronmental parameters in marine environments using robotics
systems. In addition to free swimming autonomous under-
water vehicles, towed surface sensors provide an effective
mechanism to collect some types of data such as shallow-
water coral images [12]. Of course, due to light absorption
and scattering, surface vehicles are suitable only for shal-
low water. Measurements in deeper water present serious
logistical challenges either in terms of deployment of fixed
immobile sensors, or in the deployment and operation of
mobile systems, yet progress is being made. For example,
in [13] 3D reconstructions of the sea floor are recovered.
Several groups have used such vehicles typically with highly
specialized operational parameters [14]. In exciting work
that includes tracking of motile species, Dunbabin et al.
consider the tracking of invasive crown of thorns on coral
reefs using vision based imaging [15].

Large-scale surveys of marine environments are only
recently becoming efficient due to the combination of robust
autonomy, vehicles with sufficient endurance, and suitable
data processing infrastructures. One notable landmark is
the large scale survey of kelp forests near Australia using
an autonomous underwater vehicle whereby thousands of
square meters of shallow-water sea floor were surveyed [16].
That work did not apply image-based classification methods
to the data set, but it did illustrate the potential to cover
large regions of the ocean. In the current work we examine
much smaller regions, but at rather greater depths and with
image-based methods to identify specific marine taxa.

III. APPROACH
A. Problem Formulation

Our objective is to obtain population estimates (i.e counts)
of organisms at or near the ocean bottom to estimate their
distribution and abundance. Doing this can impact the habitat
when direct sampling methods are used (e.g trawling), and
this process can also be very laborious. For example, when
images are visually analyzed by human beings, substantial
effort is typically expended to obtain consistent meaningful
data. Automatic methods to analyze images and extract



counts from photographs are expected to make a significant
improvement in the process of obtaining counts from im-
ages, and thus of obtaining low-impact population estimates.
Here we present a method of enumerating bottom-dwelling
organisms using vision-enabled marine robots.

Our approach to the problem can be split into two parts.
First we deploy an underwater robot equipped with a high
resolution, high dynamic range camera, to collect images of
the seafloor, over a statistically representative path. Then,
given the collected images, we train a classifier on a small
subset of the data to recognize the fauna of interest, and then
apply it to the entire dataset. As we are aiming to tackle a
density estimation problem on top of the detection problem,
we decide to follow a supervised approach. We validate the
approach by comparing the predicted counts with held out
ground truth data.

B. Robot Platform

We used the Jaguar autonomous underwater vehicle
(AUV), a member of the Seabed family of robots from
Woods Hole Oceanographic Institution, to collect the data
presented in this paper. Jaguar, shown in Fig.1(a), is an ideal
platform for visual seafloor inspection tasks. Its dual hull
design puts most of the payload weight in the lower hull,
while keeping the upper hull relatively more buoyant. This
sets up a naturally stable vehicle configuration that allows
for collecting image data in low light conditions.

As mentioned above, Jaguar is equipped with a high
resolution camera with a high dynamic range sensor size
and a powerful strobe light to capture high quality images
of the seafloor. Images collected from the Jaguar camera
are color-corrected using the approach developed by Singh
et al. [17].

Jaguar AUV has an endurance of 24 hours, and can go
to depths of up to 5000m. The piezoelectric pressure sensor
onboard the robot can measure depths with 1cm of precision.
The AUV navigates underwater using an optical north-
seeking gyro for heading, a doppler velocity log (DVL) for
measuring ground speed and altitude, and Long Baseline
(LBL) acoustic beacons for absolute localization. The vehi-
cle can keep itself localized with position uncertainty of less
than a meter.

Our image analysis process was conducted offline using
data recovered in the mission(s) as described above. We
developed a classifier pipeline that is able to process incom-
ing data streams from the robot and estimate the density of
species of interest.

Our approach to species sampling, classification and
density estimation is a combination of manually selected
filtering, machine learning, and data driven calibration. Our
image processing pipeline and the learning procedure is
described in III-D, but a critical precursor is the acquisition
not only of sample data, but also known ground-truth data
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for use in training the learning-based components of the
classifier.

C. Data Annotation

A selection of images and image patches were extracted
from our data set to constitute the training data for learning
and tuning the classifier. The resolution of the collected
images is 1360x1024 while the image patches are of size
64x60. This data was selected based on randomly sampling
the data set and then manually selecting additional images
to assure coverage of the diverse kinds of terrain and
illumination experienced by the robot.

Each of the randomly sampled images was divided into
357 non-overlapping patches of size 64x60 according to the
same sampling parameters used by the automated classifier
(described below). These subwindows were then presented
to a “domain expert” to classify them into three simple
classes for each species of interest:

o Yes: The species of interest occupies at least 50 per
cent of the image patch.

o No: The species of interest occupies under 30 per cent
of the image.

« Reject: The image is indeterminate with respect to the
above criteria or it is not representative of the target
data set (i.e. due to an imaging failure) or occlusion.

The data set of images with positive (“yes”) and negative
(“no”) image patches were then subdivided into mutually
exclusive subsets used for training and testing as described
below.

1) Training set: The training dataset consists of 5145
manually annotated image patches balanced in a 56/44%
negative/positive split. Compilation images of subsets of
these negative and positive patches are presented in Fig.2).

2) Test set: The test dataset consists of 921 image patches
balanced in a 55/45% negative/positive split. These patches
were arbitrarily selected from the dataset and the test and
training sets are mutually exclusive. The patches that con-
stitute the test set are also not subwindows of images that
were used in the training set.

D. Method

In this section, we describe the proposed method for
crustacean detection and density estimation. The objects we
are trying to detect are generally small and occupy small
fractions of each image individually. However, in some
cases, they are sufficiently numerous that they either occlude
one another or occupy a substantial fraction of the overall
scene. As a result, we employ a sliding window scheme that
allows us to examine small fractions of an image in isolation.
It is also important to discriminate several different types of
fauna from one another as well as from the background. In
particular, the species that we are most interested in consist
of a combination of Galatheids and Brachyuran crabs.



Figure 2. Compilation of annotated positive and negative patches: The two images presented above are compilations of (a) 5x4 negative patches not
containing any fauna of interest and (b) 5x4 positive patches containing examples of crabs and squat lobsters that the system is designed to detect. It is
worth noting that the negative patches can contain any of the following and more: clear sand floor, pebbles, boulders, cobbles, sediments, sea pens, sea
urchins, sponges, corals and other miscellaneous fish. On the other hand, positive patches contain a variety of galatheids and brachyuran crabs.

These crustaceans of interest have a conspicuous shape
that makes them fairly easy for a biologist to recognize,
when seen in isolation (at least at a coarse taxonomic
level). While shape cues alone may be sufficient for isolated
organisms, the fact that they are often occluded, particularly
by one another, led us to the observation that chromatic
cues are also very valuable, even if they can be distorted
by wavelength-dependent absorption. In addition, the non-
homogeneity of the lighting conditions and the fact that our
images were captured from a top view meant that brightness
and orientation invariance were necessary. Therefore, we
opted to use a texture descriptors based approach which was
ideal in representing the low frequency intensity variations
of crustaceans as opposed to the dense high frequency
variations of the sandy ocean floor, overwhelming present
in the background of the dataset.

1) Image Features: Our image classifier exploits shape-
related filters to extract texture information and color-space
filters to extract co-occurring color or hue features. Our
shape features are based on Gabor functions which constitute
a local representation for frequency-domain information.

The Gabor function is a well-established filter family
for measuring energy in various frequency bands of the
image while maintaining spatial localization [18]. They are
described by sinusoids with Gaussian envelopes and have
proven effective in texture classification [19] and when used
in appropriate combinations, as applied here, they can be
described as a wavelet. A Gabor wavelet has the form
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and has components k, = kpq./f" and ¢, = 7m/8.
The maximum frequency is denoted k,,,, and f is the
frequency spacing. An image can be transformed using a
wavelet through the convolution operation:

Gmn(I)

/I(xl,yl)g;m(x — 1,y —y1)dzidyr.  (3)

The m parameter determines the orientation of the
wavelet, n selects the frequency and o determines the spatial
support. By filtering with multiple wavelets, it is possible
to extract a variety of content from an image. Specifically,
in order to achieve some level of rotational invariance, we
apply eight filter orientations and the signatures for each
filter is represented by its amplitude histogram across the
image. Our signal is further reduced by representing the
amplitude histogram by its mean-variance pair, an approach
that allows robust comparisons between histograms to be
computed [20], [21].

In order to represent the color information of each patch,
a color histogram is extracted from the patch in the HSV
color space. For the three different HSV color channels, we
use 24, 3 and 3 bins respectively to quantify the distribution
of each channel separately and concatenate each computed
1D histogram of each channel into one final 1x30 vector
containing the three histograms.

Both the Gabor features and the color histogram vector are
then concatenated to form one final 1x62 length feature vec-
tor. The Gabor vector is 1x32 including the 8 orientations.
With each patch described by a specific vector, we now learn



a support vector machine (SVM) from the indexed training
images. With the learned model, we can then proceed to
make crab and lobster detection predictions on new test
images.

E. Implementation

1) SVM parameters selection and cross-validation: The
scikit-learn implementation [22] of the libsvm support vector
machine (SVM) were used throughout the work. In order to
optimize the selection of the SVM parameters, we use k-fold
cross-validation with k = 5 by partitioning our original pre-
viously described training set into five equal sized subsets.
Of these new subsets, one subset at a time is set aside as
a validation set for testing our model. We then proceed to
repeat the process k-times (k=5) for each subset using all five
as validation test sets separately, averaging the performance
over the five folds to provide a single estimation. This cross-
validation technique is then repeated for a number of SVM
parameter and kernel combinations in order to identify the
best kernel and respective parameters to use in our system.
Because the SVM parameter selection process is cross-
validated, the risks of over-fitting our datasets are minimized.

The SVM parameters are as follows (taken from scikit-
learn):

1) kernel: Specifies the kernel type to be used in the
algorithm. Examples: linear, polynomial, and radial
basis function (rbf).

2) C: penalty parameter C of the error term.

3) gamma: Kernel coefficient for ‘rbf” and ‘poly’ kernels.

As shown in Fig. 6, the optimized parameters for the SVM
are in our case: polynomial kernel, C = 10, gamma = 10.

Before we can proceed to train the system, we must first
manually annotate the training image patches. This is done
by a “domain expert”. Once the training data is annotated,
we can proceed with our training procedure.

2) Algorithm: Training Step: In order to train the system,
we first index the training dataset by describing each patch
in the dataset and and then train the support vector machine
using the indexed dataset. To do this, the following steps are
taken:

1) Convert the images into the HSV color space.

2) Apply adaptive thresholding on the V channel of the
image patch in order to simply segment more obvious
foreground objects in the images, specially with a
more uniform sandy background.

3) Describe each patch with our designed feature descrip-
tors as described above.

4) Train the support vector machine using the newly
described training set.

After we have learned our model, we can now use the
classifier to evaluate new test images.
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3) Testing and Evaluation: The same procedure that is
used to describe the training patches is used to extract the
feature descriptors of test patches and the SVM is then used
to classify the test patch as either containing crab or not.
False positives are also taken and dynamically added to the
negative training set in order to continuously improve the
system.

I'V. DATA COLLECTION AND ASSESSMENT

A. Data collection

Figure 3. AUV Waypoints: The seafloor map showing waypoints used
for planning the AUV mission to collect the dataset.

The data set was collected using the Jaguar AUV at
Hannibal seamount, off the Pacific coast of Panama, at a
height of 4 meters above the seafloor, with depth varying
between 300-400 meters [1]. Figure 3 shows the waypoints
used by the AUV for the data collection task. A total of 2296
continuous images were taken over the span of roughly 3
hours and 40 minutes at a constant frequency. These images
are taken in sequence as the robot moves autonomously
through waypoints that were pre-defined by the expedition
crew. Therefore, chronological and spatial continuity can be
assumed to be features of the dataset although our system
does not make use of these features.

The goal of the dataset was to capture various species
of Galatheids and Brachyuran crabs. Many of these species
travel in aggregates while some are found in more isolated
situations. However, the dataset also comes across other
types of fish and organisms that are not of interest to this
paper.

Sample images of the dataset are included in Fig. 4.
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Figure 4. Dataset sample images: Image (a) shows an example image that does not contain species of interest, but other fish while images (b), (c) and
(d) illustrate the diversity in the target species that our system can handle. Note that (c) in particular also contains several non-target objects.

B. Experimental Results

At this stage, we evaluate our detection system both (a)
qualitively by running our classifier over sliding windows
with new test images and (b) quantitavely by running the
classifier over our carefully annotated test set.

1) Qualitative Analysis: By running our sliding window
evaluation, we can visually review the performance of our
classifier by reviewing clear false positive and false negative
detections. While this method is purely visual and not quan-
tifiable, it is still valuable to confirm the general performance
of the system. An example test image in which detected
fauna are highlighted is presented in Fig.5.

2) Quantitative Analysis: To formally evaluate our sys-
tem, we proceed in two steps. The first evaluation tests the
system’s learned model and its classification performance.
To do this, we evaluate the test set that is independent from
our training set as described in section III-C2. We evaluated
our classifier on this test set and the results are presented
in Fig.6. On our test set, our system achieves 94% for both
recall and precision.

In order to evaluate our population density estimates,
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Figure 5. Sliding Window Detector: After running the classifier in a
sliding window fashion over the above test image, we can qualitatively
evaluate the performance of the system by reviewing false positive and
negative detections.

we simply tally the counts over each image of the entire
dataset. We then compared our estimates to the manually
annotated images which had ground truth counts of the
various species of fauna present. The results are presented
in the form of a bar graph pair which overlays the ground
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Figure 7. Population density estimates:

Overlapping bar graphs of galatheids squat lobsters and brachyuran crab counts over time. The cyan graph

showcases the number of windows detected as containing crab by the classifier over time while the magenta graph represents the ground truth counts carefully
determined through manual annotation by domain experts. The time axis is represented by the image numbers of the images collected chronologically in
the Panama dataset. The matching peaks of the graph clearly demonstrate the tight correlation between estimated and manually tallied crab population
densities throughout the dataset. It is important to note that because we are using overlapping sliding windows, the system counts are systematically (and

correctably) higher than the actual counts as can be seen in Fig.1(b) and Fig.5.

Training precision recall fl-score support
negative examples 0.97 0.97 0.97 2906
positive examples 0.96 0.95 0.96 2239

avgltotal 0.96 0.96 0.96 5145

Testing precision recall fl-score support
negative examples 0.95 0.95 0.95 509
positive examples| 0.94 0.93 0.94 412

avgltotal 0.94 0.94 0.94 921

Figure 6. Classifier performance: The above table summarizes the

performance of our classifier pipeline on a separate test set. The test
set contains a balanced 921 image patches. The svm parameters are the
following: polynomial kernel, C = 10, gamma = 10.

truth counts per image over time over the system’s counts.
The results are presented in Fig.7. It is important to note
that because we are using overlapping sliding windows, the
system counts are higher than the ground truth counts as
can be seen in Fig.1(b) and Fig.5. However, the graph clearly
showcases how our system is able to provide biologists with
coarse estimates of the highest fauna density regions across
the dataset over time. These regions are illustrated by the
apparent overlapping peaks in the graphs such as at images
550, 1000 and 1650. As mentioned, the systems count are
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however not perfect as a measure because of their inability to
handle clutter in sequences which contain heavy aggregates
of crabs for example.

V. CONCLUSION

We have described a marine robot system that uses image
data collected on the sea floor to non-destructively estimate
the populations of crustaceans. In contrast to existing tradi-
tional methods that harvest and potentially deplete the stock
to compute the population, our approach is non-invasive.
To do this, we developed and proposed a vision-based
technique for quantitatively evaluating the population of a
target marine species in the wild using color image data.
We first collected data using a Seabed autonomous robot in
a previously unexplored part of the world, identified target
species of interest, and then estimated the number of indi-
viduals of the target species in each image in the dataset. We
compared our estimated counts with data that was manually
annotated by a team of expert biologists, and found that our
technique gives 94% precision and 94% recall rate. Major
limitations of the work are found in situations of clutter
where aggregates of fauna are overlapping both in depth and
spatially. Another limiatation of the current method is the



inability to identify overlapping regions captured across the
dataset. As a result of the previously mentioned limitations,
in future work we will be focusing on extending this work
to tackle more complex cluttered habitats as well as novel
and more mobile species.
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