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Abstract—We present a method for visually detecting and
tracking the 3D pose of autonomous underwater vehicles, which
aims to enable robust multi-robot convoying. We follow the
approach of tracking-by-detection, which combines the robust,
drift-free nature of object detection with the temporal consistency
of tracking algorithms. Central to our method is a multi-output
convolutional network that jointly predicts whether the target
robot is present in the image (classification), the 2D bounding
box around the target in the image plane, and the 3D orientation
of the target. This, combined with camera intrinsic parameters
and prior knowledge of the robot’s absolute scale, allows us
to recover the full 6-degree-of-freedom pose (translation and
orientation) of the target robot. To train our network, we use only
synthetic images rendered using the Unreal game engine, which
is a cost-effective way to produce a large training set without the
need for laborious manual annotations. Our evaluation analyzes
the impact of orientation offset on 3D detection accuracy, and
demonstrates successful generalization of the learned model to
real underwater photographs of the target robot.

Index Terms—3D object detection, visual tracking, robot con-
voying, underwater robotics, data synthesis, Unreal game engine

I. INTRODUCTION

We present a vision-based approach for tracking the 3D
pose (position and orientation) of an autonomous robot in un-
derwater environments. Our tracker enables robust multi-robot
convoying, which has been studied extensively in the robotics
research community under a variety of settings ranging from
self-driving cars [1] to aerial drones [2], but relatively little in
the marine context. In the context of automated surveillance
of marine ecosystems, convoying enables the deployment of
highly configurable heterogeneous robot teams in which each
robot collects data using different sensing devices. In contrast
to deploying a single highly-capable robot, this distributed
approach is more scalable and less prone to a single point
of failure [3].

While prior work has used fiducial markers on the target to
simplify the visual detection task [1], our method relies solely
on the natural appearance of the target. In comparison, our
approach overcomes difficulties due to the marker not always
being visible as the target robot is seen from a variety of
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(a) An Aqua robot pictured under-
water in Barbados

(b) An Aqua robot simulated in
Unreal Engine

Fig. 1: The Aqua robot: a highly maneuverable amphibious
hexapod.

poses. Moreover, in contrast to previous methods that require
expensive hardware such as mobile beacons [4] or acoustic
sampling [5] to achieve localization underwater, we capitalize
on commodity RGB cameras.

Our solution employs tracking-by-detection: the relative
position and orientation of a robot is detected at every frame,
and integrated temporally via filtering. The detector we employ
is a convolutional neural network (CNN) trained on synthetic
images rendered using a CAD model of the robot. The
trained network jointly regresses the robot’s orientation as a
quaternion, as well as a tightly fitting bounding box around
the robot in the image plane. Given the camera’s intrinsic
parameters and the absolute scale of the robot, we can use
the detected orientation and bounding box to directly estimate
the 3D translation of the target robot. In this way we acquire
the full 6-degree-of-freedom (6-DOF) pose of the target.

Training a convolutional network typically requires a large
training dataset, but manually labelling 3D ground truth on
real images is labor-intensive, and requires the labeller to
learn to use sophisticated software tools. Thus, we opt to
generate our entire training data synthetically. We follow the
domain randomization approach of [6], and generate a large
variation of non-photo-realistic training images featuring the
robot rendered with a variety of textures and on different
background patterns. We then test our trained model on a
test set of both synthetic and real images containing hand-
labeled 3D poses. Only having to annotate test set images
substantially reduces our data management cost. Overall, our
detection method and training regime are widely applicable



to many multi-robot convoying systems, since a CAD model
of the robot is usually readily available and the only onboard
sensor needed is a calibrated RGB camera.

We validate our method using amphibious hexapod robots
shown in Fig. 1. These belong to the Aqua family of robots [7],
which achieve a high degree of maneuverability underwater
by synchronously actuating six flippers. The on-board inertial
measurement unit (IMU) and pressure sensor provide input to
the autopilot [8], which is capable of closed-loop control over
the desired depth, attitude, and thrust. The autopilot and the
rest of the Aqua sensor suite are operated on top of the Robot
Operating System (ROS) [9] framework. Images captured by
the front-facing RGB camera serve as input to our tracking
pipeline, which can run at frame rate on the robot’s laptop-
grade dual-core Intel i3 processor and NVidia GPU (Jetson
TX2) [10].

We conduct experiments both in simulation using renderings
of the robot in synthetic aquatic environments, and on real
footage of the robot collected underwater. In our simulated
runs we analyze the robustness of our tracker by varying
the complexity of the trajectory executed by the target robot.
Experiments on real images show that our learned model suc-
cessfully generalizes and can be utilized to reliably implement
multi-robot convoying underwater.

II. RELATED WORK

A. Visual Tracking and Convoying

There is an extensive literature on visual tracking. Many
model-free tracking algorithms are designed to cope with un-
foreseen object instances. For example, in [11], the algorithm
is initialized with a bounding box around an arbitrary object
to be tracked, and the algorithm is expected to adapt to the
target’s appearance changes throughout tracking. Our approach
is closer to model-based tracking, in which a model of the
target is built ahead of time. Like [12] we use a CAD model
of the target to train a discriminator but instead of using hand-
designed edge and vertex features, we train a convolutional
network to recognize the target.

Our method falls in the category of tracking-by-detection.
The target is first detected independently at every frame, and
the detections are then integrated via tracking. This approach
has been shown to effectively combine the temporal consis-
tency of tracking with the robust, drift-free nature of object
detection [13].

In the domain of visual convoying, fiducial markers have
been added to the target to make detection and tracking easier
[1]. However, this approach is often susceptible to the marker
going out of view, so we opt to directly model the natural ap-
pearance of the target as in [14]. Explicit signalling behaviors
executed by the target has also been exploited to improve the
efficiency and robustness of multi-robot convoying [15]. We
find this to be a promising direction for future work, especially
since it has seen little adoption in the underwater environment.

In our own prior work, we have demonstrated an underwater
convoying system based on tracking-by-detection that operates
on the 2D position of the robot in the image plane [16]. In this

work we track the 3D pose of the target, which allows us to po-
tentially leverage a more geometrically detailed motion model
to better predict the motion of the target, ultimately resulting
in more robust tracking. This is becoming especially relevant
as we have successfully demonstrated complex exploration
behaviors on the Aqua robot in which the robot stays close
to corals while avoiding collision and barren uninteresting
regions [17]. Convoying under this setting requires visually
tracking the robot while it carries out complex maneuvers.

B. 3D Object Detection

Recently there has been substantial interest to move beyond
2D bounding box detection and to infer 3D information about
objects in the image. While earlier work relies primarily on
detecting hand-crafted features (i.e. SIFT, HOG) in the image
and matching them to features on known 3D object models
[18] [19] [20], newer methods often leverage convolutional
networks, either to directly learn a mapping from pixels to
pose information [21] [22], or to use features produced by
the network to facilitate subsequent pose optimization [23]. A
variety of object representations have been tried, including 3D
object centroid [6], 3D bounding box [21], 3D skeleton [22],
and CAD model instances retrieved from a database [23].

In the target tracking domain, we are able to assume that
the physical dimensions of the target is known. We leverage
this in our detection method, wherein we train a network to
output only the target’s orientation and 2D bounding box; we
then combine this information with the known scale to directly
optimize the target’s translation. As in [24], we regress the
orientation as a quaternion.

C. Training on Synthetic Data

Modern object detectors based on convolutional networks
are heavily dependent on abundant training data. Compared
to traditional detection tasks that typically output only 2D
bounding boxes in the image plane, 3D pose detection intro-
duces an expanded output space, which leads to even greater
data requirements and much more labor-intensive ground truth
annotation procedures. Highly sophisticated software tools are
typically required to characterize the 3D pose of objects that
appear in images, which adds to the challenge of creating
sufficient training data [25].

To sidestep the need for data labelling, there has been
considerable interest in using synthetic images rendered from
CAD models as training data [26] [27] [28]. Peng et al. find
that a pre-trained network that is fine-tuned on synthetic data
can better adapt to new tasks than directly training a network
for the new task using few labeled real images [29]. We
take a similar approach by bootstrapping our network with
weights from the VGG network trained on ImageNet [30],
and retraining on synthetic data.

We are also inspired by the work on domain randomization
by Tobin et al. [6], which demonstrates that when a model
is trained on a large set of unrealistic images that exhibit
sufficient variability, the real world can simply be considered
as another variation. This approach is especially relevant for



the underwater domain since factors such as light absorption
and reduced visibility caused by suspended sediment are
difficult to simulate. Our synthetic training data renders the
target robot using a variety of textures and an assortment
of background patterns in order to help our learned model
generalize to real images.

III. METHOD

A. Pose Estimator

We define a multi-output convolutional network that consists
of a robot classifier, an orientation regressor (in quaternion
form) and a bounding box detector. We train the network on
monocular images generated synthetically using the robot’s
CAD model and various backgrounds constructed in the
Unreal [31] game engine. The classifier simply outputs a
probability p of the image containing the robot. The orientation
regressor head of the network outputs the robot’s orientation
as a normalized quaternion vector q = (w, x, y, z). The
bounding box detector outputs a vector b outlining the diagonal
coordinates of the bounding box: (xmin, xmax, ymin, ymax).
These coordinates are normalized with respect to the width
and height of the image to lie in [0, 1]. Note that directly
regressing 3D relative translation will prevent the trained
network from operating on cameras with varying focal lengths,
so we compute it instead from the estimated orientation and
bounding box, as we will discuss later.

We initialize our pose estimation network with the VGG16
architecture as it has been demonstrated to perform well
on visual classification tasks [30]. We use VGG weights
from pre-training on ImageNet. Our images are resized to
(224, 224, 3) to match ImageNet’s scaling. We discard the
VGG fully connected layers (FC) and augment the network for
orientation regression with four FC-ReLU layers, the bounding
box regression with two FC-ReLU layers and classification
with two FC-ReLU layers.

The loss function we minimize combines the binary cross-
entropy for the classification, the L2-norm of the four coordi-
nates of the bounding box and the L2-norm of the orientation
quaternion with lambda scale factors to balance the losses.
Formally, it is defined as:

L = λb ∗ Lb + λq ∗ Lq + λc ∗ Lc (1)

where the L2-norms are defined as

Lq =
1

2n

∑
x

||qgt − q||2 (2)

and

Lb =
1

2n

∑
x

||bgt − b||2 (3)

and the binary cross-entropy is defined as

Lc = −
∑
x

(pgt log(p) + (1− pgt) log(1− p)) (4)

To obtain the relative translation t∗ of the robot, we solve
the following minimization problem:

t∗ = argmin
t
‖b− π(q, t)‖2 (5)

where b = (xmin, xmax, ymin, ymax) is the detected bound-
ing box, and π(q, t) = (xπmin, x

π
max, y

π
min, y

π
max) is the

projected bounding box of the robot at translation t with
orientation q. Note that computing π(q, t) requires that the
camera’s intrinsic parameters and the robot’s absolute scale
are known.

During convoying, we run a Kalman-Filter based tracker
on the follower robot to integrate the detected translation and
orientation of the leading robot and the bounding box over
time. We use a PID controller to interface with the autopilot
on the follower so that it maintains a fixed pose relative to the
leader while both robots swim.

IV. EVALUATION

We first evaluate the pose estimation network in isolation
on a real underwater test set by measuring mean angle errors
across the dataset as well as their distributions over angles.
We then evaluate the tracking performance by analyzing the
mean orientation errors across entire trajectories of varying
complexity using the Kalman-Filtered pose and bounding box
estimates. We do this on both synthetic and real trajectories.

A. Pose Estimation Dataset

Our pose estimation dataset consists of a mixture of syn-
thetic images generated with Unreal Engine [31] and real
manually annotated underwater images collected during field
trials at McGill University’s Bellairs Research Institute in
Barbados. We restrict the training set to only use synthetic
images. This setup highlights our goal of avoiding dependence
on the tedious manual annotation process by relying on easily
generated synthetic data for training. Our experiments display
the network’s ability to generalize to real images.

Fig. 2: Image samples from synthetic training data generated
using Unreal.



1) Unreal synthetic dataset: The training data consists of
40000 synthetic images generated in Unreal [31] with 45
lighting variations (including varied angle and intensity), 2
robot chassis materials (matte and shiny), 2 custom parts
variations on the robot on 4 sets of backgrounds, including
a simulated custom-designed underwater world, a simulated
pool, and random textures.

In order to increase the realism of the simulated envi-
ronments, professionally made photo-scanned assets and tex-
tures are used from Quixel Megascans [32], including rocks,
coral, sand, fish, and plant life. The simulated underwater
environment used for both dataset generation and evaluation
are inspired by previous footage and data from field trials
in Barbados and is approximately 0.5km by 0.5km. The
simulated pool environment is created to match the dimensions
of the McGill University pool. Visual effects within Unreal
Engine such as Exponential Height Fogs and Post Process
Materials are added and tuned to mimic the visibility and hues
of the real environments.

The Aqua CAD model is randomly placed in the field
of view using a randomly generated pose with [−85◦, 85◦]
bounds on the three rotation axes (roll, pitch, yaw) and
[0.5m, 2.0m] bounds on the robot’s distance from the camera.
Image samples of the training data are shown in Fig. 2.

2) Real underwater dataset: Our test set consists of 1000
real images collected during underwater field trials off the west
coast of Barbados. The images are captured from diver-held
GoPro cameras and an Aqua robot’s on-board camera. We
annotate the 6-DoF pose of the robot in each of these images
using a custom-built annotator, which allows the user to mark
keypoints on the robot assigned from the CAD model. The
annotator then iteratively fits a wireframe to the robot using
its known dimensions.

B. Trajectory generation

1) Unreal synthetic trajectories: In order to evaluate our
tracking performance in simulation, we generate a dataset of
synthetic videos showcasing the robot performing a variety of
trajectories in the Unreal underwater environment. This allows
us to quickly compare our tracker’s projected trajectory to the
Aqua’s actual swimming path without the tedious process of
annotating real underwater footage frame by frame.

In Unreal Engine, we use the custom-designed underwa-
ter world described in Sec. IV-A1 as the backdrop with a
gamepad-controlled simulated Aqua model. Exactly 2 meters
behind the Aqua model, we place a simulated camera that
serves as the tracking camera. Default settings in Unreal En-
gine cause the camera to translate and rotate perfectly with the
object it is following, so we introduce artificial lag that allows
the target Aqua to partially escape the camera frame, but to
never fully leave the camera view. We then record four distinct
videos of the Aqua maneuvering the simulated underwater
environment from the point of view of the tracking camera,
restricting different rotation axes for each. This provides us
with trajectories showcasing the robot rotating only along a)
yaw, b) yaw and pitch, c) yaw and roll, and finally d) roll,

pitch, and yaw. Along with each saved frame from the tracking
camera, ground truth information including the 6-DoF pose
and bounding box of the target Aqua and the pose of the
camera are stored as a ROS bag file and can be replayed on
the real robot if necessary.

2) Real underwater trajectories: We generate a dataset of
underwater trajectories from footage captured by an Aqua of
a secondary target Aqua in a multitude of underwater environ-
ments in Barbados. Unlike the synthetic trajectories, these real
trajectories do not display a high amount of variability across
the roll and pitch axes and do not include as much clutter.
In each video, we annotate every 10 frames and evaluate the
trajectory errors over the annotated frames. These trajectories
are used in the next section to evaluate tracking performance.

Fig. 3: Sample detections and pose estimates on test images.

V. RESULTS

We summarize results from evaluating both the 3D detection
and pose estimation in isolation on our real images test set and
the tracking performance on synthetic and real trajectories.

A. Pose Estimation

Qualitative detection results showcasing the wireframe of
the robot overlaid on test images are presented in Fig. 3. The
images used for this evaluation are real underwater images
collected in Barbados from the test set described in IV-A2.
We summarize the performance of our model on the test set
in Table I. The table shows that pitch dominates the rotational
error.

TABLE I: Base metrics evaluated over the real underwater test
set collected in Barbados IV-A2.

Mean
Rotation
Error

Mean Roll Er-
ror

Mean Pitch
Error

Mean Yaw Er-
ror

23.51◦ 7.29◦ 12.05◦ 5.87◦

We also measure recall of the orientation estimate from the
test set over a number of θ thresholds, 30◦ usually being the
default. Our results are presented in Table II.



TABLE II: Orientation estimate recall for different θ thresh-
olds.

60◦ 45◦ 30◦ 22.5◦ 15◦ 7.5◦

Recall 0.89 0.79 0.57 0.40 0.21 0.03

A plot of a randomly sampled subset of angle errors relative
to their respective angle value shows a concentration of errors
below the 20◦ mean orientation error. While pitch dominates
the rotational error as per Table I, Fig. 4 shows that pitch errors
tend to jump after the 50◦ pitch angle. This might be explained
by the loss of view of some important key features of the
robot’s back. As the robot’s top plate is plain aluminum with
very little variation, our network might find it more difficult to
extract enough features to distinguish pitch angles beyond this
mark. The behavior is slightly less present with the yaw axis
and almost non-existent in the roll axis which in particular
maintains a good view of the back plates of the robot.
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Fig. 4: Angle errors vs angle values for yaw/pitch/roll from a
subset of the test set.

B. Trajectories

We measure the root mean squared error (RMSE) of the
translation and the orientation of the target’s Kalman-filtered
pose against the ground truth trajectories that were generated
in Unreal or annotated manually. For synthetic trajectories,
we restrict various axes of rotations in order to understand the
impact of certain axes on the orientation RMSE. The results
of our evaluation are summarized in Table III. We note that
our calculated translation results in an average error of < 1m
while orientation RMSE is on average < 30◦, consistent with
our test set evaluation.

As mentioned in Sec. IV-B2, the real trajectories display a
much lighter amount of clutter and much more predictable
paths with less variations across the roll/pitch axes. This
explains the overall inferior performance on the synthetic
trajectories, which include fish animations, heavy rocks and
corals and a variety of textures. However, the table demon-

strates our system’s ability to robustly track the robot in real
underwater trajectories despite never training on real images.

To better visualize the trajectories, we include plots of the
ground truth trajectories overlaid on the underwater environ-
ment for the synthetic trajectories in Fig. 5.

(a) Yaw only trajectory

(b) Yaw and roll trajectory

(c) Yaw and pitch trajectory

(d) Yaw, pitch and roll trajectory

Fig. 5: Plotted ground truth (green) trajectories.

VI. CONCLUSION

We presented a tracking-by-detection method for tracking
the 3D pose of an autonomous underwater vehicle with an
aim to improve and enable multi-robot convoying. Our method
relies on a pose estimation multi-output convolutional neural



TABLE III: Kalman-Filtered pose errors over synthetic and real trajectories. The tracking camera is located within a range of
[0.5m, 2.0m] from the target.

Sequence Sequence Length (s) Translation RMSE (m) Orientation RMSE Roll RMSE Pitch RMSE Yaw RMSE
Synthetic Yaw Only 68 0.60 21.76◦ 10.92◦ 8.44◦ 19.20◦

Synthetic Yaw + Pitch 75 0.61 32.86◦ 29.11◦ 25.5◦ 17.37◦

Synthetic Yaw + Roll 70 0.79 21.65◦ 10.63◦ 14.52◦ 14.60◦

Synthetic Yaw + Pitch + Roll 83 1.29 31.97◦ 26.57◦ 16.69◦ 16.93◦

Real Barbados Underwater 1 70 0.72 17.59◦ 11.87◦ 4.59◦ 12.11◦

Real Barbados Underwater 1 40 1.17 14.88◦ 11.74◦ 5.87◦ 7.12◦

Real Barbados Underwater 1 30 0.40 20.96◦ 14.23◦ 7.19◦ 14.40◦

network that jointly predicts the target robot’s presence in
the image, its 3D orientation and the bounding box that
encapsulates the target. Combining this information with the
robot’s known scale and the camera intrinsics, we compute an
estimate of the 3D translation of the robot in order to obtain
the full 6-degree-of-freedom pose. We trained exclusively on
synthetic training data generated in Unreal engine in order to
bypass the tedious task of 3D pose manual annotations. Our
system demonstrates the ability to transfer its performance
from the learned model to a real underwater dataset and
achieves a 23.51◦ mean rotational error over the entire dataset.
Using our pose estimation network, we then apply a Kalman-
filter on the pose and bounding box and evaluate our system
on a variety of synthetic and real trajectories. In particular, we
restrict various axes of rotation on the synthetic trajectories in
order to isolate the errors across the axes. Our system achieves
a mean translation RMSE of 0.79m and mean orientation
RMSE of 23.09◦ over all the trajectories.

VII. FUTURE WORK

The rich geometric information recovered from 3D target
tracking can be leveraged for gesture-based communication.
Humans use gestures in a variety of settings when other
forms of communication are difficult - some examples include
aircraft marshalling in aircraft ground handling, and hand
gesturing by scuba divers. In robot convoying, [15] leverages
gestures performed by the target to communicate its intended
heading to the follower, which makes the overall convoy more
robust. A method for generic motion-based communication
between robots with monocular vision is proposed by [33],
in which the observer actively changes its position in order
to unambiguously infer the target’s trajectory and decode the
intended message. We are inspired by this line of work, and
we intend to design a visual communication system capable
of transmitting generic messages based on 3D gesturing.
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