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Abstract— In this paper we consider inter-robot commu-
nication in the context of joint activities. In particular, we
focus on convoying and passive communication for radio-denied
environments by using whole-body gestures to provide cues
regarding future actions. We develop a communication protocol
whereby information described by codewords is transmitted by
a series of actions executed by a swimming robot. These action
sequences are chosen to optimize robustness and transmission
duration given the observability, natural activity of the robot
and the frequency of different messages. Our approach uses a
convolutional network to make core observations of the pose
of the robot being tracked, which is sending messages. The
observer robot then uses an adaptation of classical decoding
methods to infer a message that is being transmitted. The
system is trained and validated using simulated data, tested
in the pool and is targeted for deployment in the open ocean.
Our decoder achieves .94 precision and .66 recall on real footage
of robot gesture execution recorded in a swimming pool.

I. INTRODUCTION

We present a vision-based robot-to-robot communication

system that leverages the rich geometric information recov-

ered from 3D target tracking to unambiguously transmit

messages through gesturing. The communication protocol

relies on a robot executing a set of gestures that are in turn

decoded by another robot from their visual appearance.

Humans commonly use gestures in various situations to

communicate intent or issue commands when other forms of

communication are difficult. Some examples include aircraft

marshalling in aircraft ground handling, hand gesturing by

scuba divers or cyclists signalling their trajectory to drivers

and fellow cyclists. With the increased deployment of robots

in constrained environments and rise of robots with a variety

of non-compatible custom hardware, gesturing can be seen

as a suitable universal communication method adaptable to

many robotic setting.

The gestures we use, represented by a sequence of pose

configurations, are treated as codewords in a code which

accounts for different transmission costs associated with each

pose configuration. The code must be prefix-free [1], [2] to

ensure no codeword can be a prefix of another codeword,

avoiding ambiguity when decoding any message linearly. We

formulate a generic communication protocol and design it to

be applicable to any robotic setting where agents are capable

of executing different discernible pose configurations. In

this paper, we focus our application and experiments in an

underwater setting, where robot communication is naturally
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Fig. 1. An Aqua robot performing codeword β4β2 in the pool with neutral
codebits βz in between.

more constrained and other communication methods require

additional hardware.

We regress 3D orientation of the robot by training a CNN

exclusively on synthetic images using CAD renderings of

the robot in a synthetic underwater environment designed

in Unreal game development engine [3]. This approach

eliminates the need of labour-intensive manual labelling of

real underwater images and allows us to benefit from domain

randomization techniques [4] to robustify our model.

We validate our system on the Aqua family of amphibious

hexapod robots [5] shown in Fig. 1. Aquas are highly

manoeuvrable and rely on six actuated flippers to traverse

underwater environments. Navigation and gesturing are han-

dled by the robot’s 3D autopilot [6] which relies on an on-

board inertial measurement unit (IMU) and pressure sensor

to perform closed-loop control over requested depth, attitude

and thrust. Aqua’s controllers and sensor suite are operated

within the Robot Operating System (ROS) [7] framework.

Our visual tracker and decoder relies on images captured by

the front-facing RGB camera and runs at frame rate on the

robot’s laptop-grade dual-core Intel i3 CPU and Nvidia GPU

(Jetson TX2) [8].

We evaluate our system both in simulation using a

synthetic marine environment designed in a custom Aqua

simulator [9] built on Unreal and in a real underwater

context from both marine and pool settings. Our evaluation

demonstrates successful generalization of the synthetically

trained pose estimator to real images.

II. RELATED WORK

A. Visual Tracking

In our prior work, we have presented underwater tracking-

by-detection [10] systems that operated on both 2D bounding

box detection [11] and 3D pose estimation [12]. In both



approaches, detection of the target in every frame is inte-

grated using filtering. Other approaches to tracking include

the use of CNNs in 2D [13], sparse vectors [14] and other

techniques [15], typically based on 2D image models. As

in prior work [12], [16], we regress the orientation as a

quaternion using CNNs. Using 3D pose information offers

the distinct advantage of capturing the implicit intent of the

robot as it positions itself to take a certain heading. This

results in a better predicted motion model and thus more

robust tracking. The notion of tracking for motion prediction

and estimation has been considered in several contexts and

has many applications [17], [17]–[21].

To avoid the tedious task of data labelling, there has been

significant work on using synthetic images for training [4],

[22]–[25]. We take a similar approach by training our net-

work on synthetic data generated in Unreal. We also vary

backgrounds and textures in our synthetic data which helps

our learned model generalize to real images without needing

to train on them.

B. Robot Communication and Visual Communication

Several authors have considered the utility and nature of

gesture-based communications in robotics [26], [27]. There

has also been some prior work on allowing robots to commu-

nicate via body movement [28] or mutual observation [29],

[30]. In [31], gestures performed by a target robot are used

to communicate heading in a robot convoying setting. While

the robot behavior is important, a key aspect of this scheme

is specifically engineering a set of body markings (helical

drawings) for the robot that wishes to communicate. In

addition, the vocabulary that is encoded is very simple and

does not include any provision for error correction.

In marine environments, radio communications are often

impractical or impossible but several authors have examined

interesting alternatives [32]–[34]. In contrast, whole-body

motions and activities is widely employed in the animal

kingdom and has also inspired several robotics efforts [31],

[35]–[41]

While most of these methods rely on additional hardware,

our system benefits from RGB cameras, typically available

on most platforms. In an underwater setting, our method also

benefits from being diver-friendly as gesturing is much more

interpretable by divers already occupied with their current

dive plan.

C. Optimal Prefix-free Codes

Finding a minimal cost prefix-free code in which the en-

coding alphabet features r symbols of unequal letter costs is a

well-studied problem [42]–[44]. Such an encoding represents

a generalization of the classical Huffman coding problem [1]

of constructing a binary (r = 2) prefix code which minimizes

the expected transmission cost. The generalization relaxes the

binary requirement for the encoding alphabet and introduces

variable costs for each encoding character (codebit). This

is desirable when it is preferable to minimize the average

number of codebits and when codebits of the encoding

alphabet have a varied transmission cost such as in the

Morse-code alphabet {·,−}. In our setting, the variable cost

is also an excellent way of penalizing pose configurations

that are energy intensive, harder to reliably detect and more

ambiguous during day-to-day operation of the robot.

Karp [42] was the first to study the problem and proposed

an exponential time integer linear programming solution.

Several methods to reduce algorithm run-time of designing

optimal prefix-free codes with unequal letter costs have been

proposed but all impose constraints on the problem. In [44],

the authors restrict the letter costs to a binary set. In [43], the

authors propose a dynamic programming algorithm to build

the tree in a top-down fashion, where the costs are integers.

We implement the latter algorithm in our method due to its

flexibility with the cost requirements. The algorithm runs in

polynomial time but it is still unclear whether the general

problem with non-integer costs is polynomial-time solvable

or NP-hard.

III. METHOD

Our method consists of two main components: 1) an

optimal prefix-free encoding of poses where each codebit

corresponds to an orientation bin with a defined transmission

cost and 2) a visual decoder which relies on a CNN-based

orientation regressor to detect the 3D orientation of the robot

to in turn decode the codeword.

A. Optimal Prefix-Free Encoding of Poses

We consider the problem of efficiently encoding a set

of messages based on robot pose configurations. These

messages can include urgent announcements, commands, and

parameters to be passed between robots deployed in the field

on a collaborative task. An example list of messages are:

• HELP

• DANGER

• LOW BATTERY

• U TURN

• START MAPPING

• GO TO DIVER X

• DESCEND X METERS

• STOP

Let n be the number of messages we wish to encode and

communicate using an encoding alphabet Σ = {β1, ..., βr}
which consists of r codebits. This set of codebits or alphabet

corresponds to the set of pose configurations the robot can

perform.

Each codebit βi is associated with a transmission cost

ci = T (βi) and a codeword cw = {βi1βi2 ...βik} - a list

of codebits from Σ. A codeword has a transmission cost

equivalent to the sum of the costs of its individual codebits:

T (cw) =

k∑

j=1

cij (1)

A code W is defined as the set of codewords cw1, ..., cwn

and is considered prefix-free if no codeword cw ∈ W is a

prefix of another. For example, a code containing codewords

{β1, β1β4, β3β3} is not prefix-free. We can then define

the cost of a code as the expected transmission cost of a

codeword:

C(W ) =
∑

i≤n

T (cwi) · pi (2)



where pi is defined as the probability of transmitting

message i.

A list of definitions is included here for reference:

• Codebit βi: a particular pose configuration.

• Alphabet Σ: a set of codebits.

• Codeword cwi: an ordered list of codebits.

• Code W : a set of codewords.

In order to choose codebits of the encoding alphabet Σ,

the orientation space of the robot is binned. The roll, pitch

and yaw axes are each discretized into bins of size θ◦r , θ◦p ,

θ◦y respectively. We then take the combinations of the bins

from each axis to represent the codebits. Individual axes can

be ignored as needed depending on the robot capabilities. In

this paper, we choose to forego the roll axis to maintain a

smaller number of codebits which is sufficient for our needs.

For an example list of codebits, please see Tab. I.

TABLE I

EXAMPLE LIST OF 9 CODEBITS GENERATED FROM BINNING OF THE YAW

AND PITCH AXES WITH θp = θy = 60◦ AND ASSOCIATED ANGLES.

Codebit Roll (◦) Pitch (◦) Yaw (◦)

β1 0 -60 -60
β2 0 0 -60
β3 0 60 -60
β4 0 -60 0
β5 0 0 0
β6 0 60 0
β7 0 -60 60
β8 0 0 60
β9 0 60 60

To assign codewords to messages we sort the messages by

their probability, and assign higher probability messages to

codewords with lower transmission cost.

We define a transmission cost function that is based on

three constraints:

T (βi) = p(βi) · ē(βi) · d(βi) (3)

where we define p, ē and d as:

• p(βi): the probability of a codebit in regular operation.

This value allows us to ensure high probability codebits

are penalized and not used in our code so that gestures

are not confused with regular operation. In order to

obtain this probability distribution, we run our pose

estimator on footage of the robot in operation and

extract the histogram of orientation bins.

• ē(βi): the normalized mean error of the orientation

regressor when executed on the corresponding bin of

the codebit. This helps avoid using difficult to detect

codebits in our encoding.

• d(βi): an application-specific value which can represent

the time it takes to execute a codebit, or other engineer-

ing restrictions in maintaining a certain codebit, also

normalized to [0, 1]. This penalizes gestures that are

difficult to execute.

where the input to each of these measures is the bin that cor-

responds to βi as defined previously. Based on the calculated

transmission cost, a cut-off could be used to eliminate certain

codebits from the encoding alphabet. A histogram showing

the probability of codebits in regular operation is presented

in Fig. 2.

Fig. 2. A histogram showing the codebits probabilities captured from 5
minutes of footage of regular operation of the robot. We discourage the
use of high probability codebits in message encoding to prevent the false
detection of gestures during regular operation.

Given our list of codebits and their associated costs, we

implement the optimal prefix-free dynamic programming

algorithm presented by [43] to obtain the code-tree that

minimizes the total cost of the prefix-free code. An example

code tree is presented in Fig. 3.

Fig. 3. An example optimal prefix-free code tree using the codebits from
Tab. I with r = 8 codebits and n = 15 messages. The leaves of the
tree (highlighted in gray) represent the final codewords that make up the
code. The cost associated with each codebit is defined in the following list:
c = [1, 1, 1, 2, 2, 2, 3, 3] for codebits [β4, β6, β8, β2, β3, β3, β9, β1, β7]
respectively. The costs are the equivalent of the depth level of the tree.

B. Visual Decoder

Using the codewords from the tree generated in Sec. III-A,

we can now execute each encoded message on the robot. In

order to simplify the decoding algorithm, we insert a neutral

codebit βz between every codebit in a codeword. This serves

as a marker to register when every codebit is executed. For

example, codeword {β1β2} becomes {β1βzβ2βz}. Fig. 1

shows Aqua executing the codeword {β4βzβ2βz}

In order to get an orientation estimate, we rely on our prior

work in [12] and train a (CNN) as an orientation regressor on

monocular images of a model of the Aqua generated syntheti-

cally in Unreal. A description of our training and test datasets

are presented in Sec. IV. This regressor is initialized with the

VGG16 architecture [45] which has been shown to perform

well on visual tasks. We use VGG weights pre-trained on

ImageNet and augment the network for orientation regression

of a quaternion. The network outputs the orientation estimate

q = (w, x, y, z) of the robot with respect to the observing

camera. The loss function is defined as the L2-norm of the

orientation quaternion:



Lq =
1

2n

∑

x

||qgt − q||2 (4)

Our network generalizes to real images without ever

needing to train on them, foregoing the need for any human

labelling of images. During tracking, we apply a Kalman-

Filter tracker on the observer to integrate the orientation

estimate.

To account for pose estimation errors and viewpoint vari-

ations, the codebits are detected if they are within a bin of

the target codebit angles with the bin limits offset from the

center by [−20, 20].
In order to decode an executed codeword, we obtain the

filtered pose estimate on every frame and bin the orientation

estimate. We then check if the bin corresponds to any

codebits of the encoding alphabet. If we have detected a valid

codebit that is not identical to the previous detected ones, we

check if this codebit βt is a prefix of any of our codewords. If

we are already tracking a candidate sub-codeword candt−1,

we instead check if candt = candt−1 ∪ βj is a prefix of a

codeword in code W . If it is a codeword in W , we have

detected a message.

The prefix-free nature of the code means that codewords

are non-ambiguous and the transmission costs used to gener-

ate the code help to ensure that codewords are not confused

with regular pose configurations that occur on a normal

execution of the robot.

Note that this algorithm assumes the observer is mostly

following the target and looking at it from a limited view-

point window. The observer can have translation offsets but

generally assumes the target is executing messages with a

local frame of reference that is relative to its camera. To

better handle smaller viewpoint variations expected from any

moving observer, we update the codebit bin centers according

to the latest neutral codebit detected and its offset from its

original neutral codebit center up to [−10◦, 10◦].

IV. DATASET

A. Pose Estimation

Our pose estimation dataset contains a mixture of synthetic

images generated with a custom Aqua simulator [9] built

on Unreal and real, manually annotated underwater images

collected during field trials at McGill University’s Bellairs

Research Institute in Barbados. We opt to restrict the training

data to exclusively rely on synthetic images and do not

include any real images in our training process. As seen

in [12], using only photo-realistic synthetic images for our

training set reduces the need for tedious manual annotation

while resulting in a trained network that can accurately

generalize to real data.

1) Unreal synthetic dataset: The synthetic dataset used to

train our pose estimator consists of 50, 000 images created

in Unreal with 45 variations in lighting angles and intensities

on 4 sets of backgrounds, including a simulated custom-

designed underwater world, a simulated pool, a fixed plane

populated with random textures, and a white background.

The Unreal Engine is one of the most faithful photoreal-

istic simulation engines available. The simulated robot is

displayed with 2 different robot chassis materials (matte and

shiny) as well as 2 attachment configurations, one with and

one without a downward facing camera attachment.

The simulated environments used in this paper were identi-

cal to those used in [12], utilizing professionally made photo-

scanned assets and textures to increase realism [46].

The Aqua CAD model within each image is first randomly

placed within the camera frame between [0.5m, 2.0m] away

from the simulated camera, then given a random orientation

within [−85◦, 85◦] on the three rotation axes (roll, pitch,

yaw). Samples from the synthetic training data are presented

in Fig. 4.

Fig. 4. Image samples from synthetic training data generated using Unreal.

2) Real underwater dataset: Our test set is comprised

of 1000 real images collected during underwater field trials

off the West coast of Barbados. The images are captured

using a following robot’s on-board cameras and diver-held

cameras at variable distances and angles, mainly looking at

the back of the Aqua. Using a custom-built annotator, we

manually annotated the 6-DoF pose of the robot in each of

these images, which allows the user to mark keypoints on the

robot assigned from the CAD model. The human annotator

then iteratively fits a wireframe to the robot using its known

dimensions.

B. Visual Encoding

To evaluate our visual encoder, we prepare a dataset

containing the Aqua executing codewords in both real pool

trials and in the Aqua simulator [9]. To create this testing

dataset, we record both generated synthetic videos of a sim-

ulated robot and real videos of the physical robot executing

the motions that correspond to a subset of the codewords

generated in Fig. 3.

1) Simulated gestures using Unreal engine: The synthetic

testing data is comprised of recordings of the simulated robot

executing motions for each of the codewords listed in Tab.

III within the realistic simulated underwater environment,

totalling 50 recordings per codeword.

To execute the motions, a controller within the Aqua

simulator is fed a target orientation offset, θβi
, corresponding

to a codebit along with the time allowed, ∆t, for the Aqua

to reach the target orientation.



Once the target is reached, there is a pause for approxi-

mately 1.5 seconds before returning to the neutral orientation

and continuing onto the next codebit or codeword. This

simple, idealized dynamics model gives a solid baseline for

comparing real world examples.

Variations to each execution of a codeword include a) a

random starting orientation within the simulated underwater

environment with bounds of [−10◦, 10◦] for roll, [−20◦,

20◦] for pitch, and [−180◦, 180◦] for yaw, b) random

additions to the target orientation for each axis with bounds

of [−5◦, 5◦], and c) changes in speed of the robot through

random scaling of the amount of time allotted for each

motion, normally 2 seconds, with bounds of [.8, 1.2]. Each

random variable is chosen with uniform distribution.

Images of the synthetic Aqua performing a particular

codebit in Unreal are presented in Fig. 5.

Fig. 5. Synthetic Aqua robot positioned according to codebit β1 (left) and
β4 (right).

2) Real underwater pool gestures: The testing dataset

used to evaluate visual encoding in a real world setting

consists of, on average, 10 recorded examples of the Aqua

executing gestures in the McGill University pool for each of

the codewords listed in Table IV.

In order to execute the gestures corresponding to codebits

on the physical Aqua, a custom PID autopilot controller [6]

is utilized. Given a target orientation offset for a chosen

codebit, the autopilot controller causes the Aqua to rotate,

stopping when the IMU reading indicates the Aqua is within

5 degrees of the target angles. To prevent the Aqua from

drifting and accidentally appearing to execute an undesired

motion, the controller maintains the neutral orientation for 3

seconds before a new motion is attempted, where the neutral

orientation is considered to be the orientation at which the

Aqua starts executing a gesture.

3) Unreal trajectories: An important evaluation of our

method involves decoding messages from a robot as it

moves around its environment in regular operation. This

evaluation ensures that messages aren’t missed while per-

forming basic navigation and ensures the decoder’s ability to

discern regular operation from messaging. In order to test our

visual decoder’s performance in simulation, we generate a

dataset of 10 synthetic videos showcasing the Aqua executing

gestures intermittently as it explores the custom-designed

underwater world described in Sec. IV-A.1. Each recording

features 1 codeword repeated 5 times at random over the

course of approximately 2 minutes of navigation.

To generate this data, we place a simulated camera approx-

imately 2 meters behind a simulated Aqua model. Default

settings in Unreal Engine cause the camera to translate

and rotate perfectly with the object it is following, so we

introduce artificial lag to the camera’s rotation to simulate

the delay that would occur in a real trial as either a human

or robot attempts to follow a gesturing Aqua. The videos

recorded by the simulated camera are stored in a ROS bag

along with ground truth information, including the 6-DoF

pose and bounding box of the target Aqua and the pose of

the camera.

V. EXPERIMENTAL RESULTS

Fig. 6. Pair of Aqua robots following one another at sea and positioned
for gesture-based communication.

A. Pose Estimation

Our orientation regression network is evaluated in isolation

by evaluating mean angle errors on a real underwater test

set. A table summarizing the angle errors from prior work

in [12] is reproduced here in Tab. II in order to showcase

the orientation regression performance.

TABLE II

BASE METRICS EVALUATED OVER THE REAL UNDERWATER TEST SET

COLLECTED IN BARBADOS AS PER SEC. IV-A.2.

Mean

Rotation

Error

Mean Roll Er-

ror

Mean Pitch

Error

Mean Yaw

Error

23.51◦ 7.29◦ 12.05◦ 5.87◦

B. Static Visual Decoding

In order to simplify our deployment and encoding al-

phabet, we forego the roll axis and generate codebits by

using 3 bins with θy = 60◦ and θp = 60◦, restricting the

orientation space to {−90◦, 90◦}. The corresponding codebit

list is shown in Tab. I. We assign the neutral codebit to be

βz = β5.

To derive the transmission cost of each codebit, we plot

the probability of codebits in Fig. 2 and a randomly sampled

subset of angle errors relative to their respective angle value

in Fig. 7.

The dynamic programming algorithm we implement from

[43] optimally encodes n messages in O(nC+2) time

and O(nC+1) space where C is the highest integer cost

assigned to a codebit. We restrict our evaluation on a

simpler cost list c = [1, 1, 1, 2, 2, 2, 3, 3] for codebits

[β4, β6, β8, β2, β3, β9, β1, β7] respectively. This cost list is

an integer cost list which is reflective of the order of the



Fig. 7. Angle errors vs angle values for yaw/pitch/roll from a subset of
the test set. This plot was first presented in [12].

transmission costs as opposed to their values. We generate

the optimal prefix-free code-tree for r = 8 and n = 15, as

shown in Fig. 3.

To measure our decoding performance, we evaluate our

decoder on the Unreal and real underwater gestures datasets

described in Sec. IV. We generate confusion matrices for

each dataset and summarize precision and recall values in

the matrices in Tab. III and Tab. IV.
TABLE III

CONFUSION MATRIX FOR CODEWORDS EXECUTED IN UNREAL.

CLASS-SPECIFIC RECALL VALUES ARE HIGHLIGHTED IN GREY.

β4β4 β4β2 β4β1 β4β7 β2 β1 β3 β7 FNs

β4β4 0.94 0. 0. 0. 0. 0. 0. 0. 0.06
β4β2 0.04 0.82 0. 0. 0.08 0. 0. 0. 0.06
β4β1 0.02 0.06 0.84 0. 0. 0.04 0. 0. 0.04
β4β7 0. 0. 0. 0.98 0. 0. 0. 0.02 0.
β2 0. 0. 0. 0. 0.94 0. 0. 0. 0.06
β1 0. 0. 0. 0. 0.04 0.86 0. 0. 0.10
β3 0. 0. 0. 0. 0. 0. 1. 0. 0.
β7 0. 0. 0. 0. 0. 0. 0. 0.90 0.10

Precision 0.94 0.93 1.00 1.00 0.89 0.96 1.00 0.98

On synthetic data, the visual decoder achieves a mean

precision of 0.96 and mean recall of 0.91. Note that the

requirement for the robot to return to a neutral codebit βz

results in some missed detections of certain messages, as can

be seen in the False negatives (FNs) column.

TABLE IV

CONFUSION MATRIX FOR CODEWORDS EXECUTED IN THE POOL.

CLASS-SPECIFIC RECALL VALUES ARE HIGHLIGHTED IN GREY.

β4β4 β4β2 β2 β1 β6 β8 FNs

β4β4 0.67 0. 0. 0. 0. 0.17 0.17
β4β2 0. 0.67 0.17 0. 0. 0. 0.17
β2 0. 0. 0.73 0. 0. 0. 0.27
β1 0. 0. 0.38 0.25 0. 0. 0.38
β6 0. 0. 0. 0. 0.83 0. 0.17
β8 0. 0. 0. 0. 0. 0.82 0.18

Precision 1.00 1.00 0.67 1.00 1.00 0.95

On real data, our visual decoder achieves a mean precision

of 0.94 and mean recall of 0.66. An explanation for the

particularly worse performance of the system in the real pool

on codebit β1 is the imperfect execution of it by the physical

robot. Codebit β1 featuring both yaw and pitch variations

were found more likely to overshoot and undershoot on pitch.

Fine-tuning of the autopilot controller for such tasks can help

mitigate these errors. Most notably, codebit β1 executions

tend to not pitch enough and were at times more closely

executed as codebit β2. Slight overshoot in the yaw axis

also lead to more false negatives than expected as the robot

skipped the neutral codebit at times which is supposed to

signal the end or transition of a codeword. These errors in

executions are typical of real systems deployed in the field.

A way to tackle these limitations is to use codebits that are

more spread out in the orientation space of the robot to allow

some room for error.

C. Visual Decoding on Swimming Trajectories

We evaluate our system on synthetic swimming trajecto-

ries of the Aqua in order to better understand the performance

of the visual decoder in a deployment setting. The dataset,

described in Sec. IV-B.3, consists of typical swimming

trajectories with messages communicated at random times.

The goal of this evaluation is to ensure the reliability of

the code even when the robot performs a variety of swim-

ming poses. We summarize the precision/recall values on

these trajectories in Tab. V. Common false negatives are

codebits β2 and β8 which represent basic left and right yaw

configurations. As shown in Fig. 2, these codebits have a

high probability of occurrence in regular deployment and

our simplified cost structure did not fully capture this cost.

Using the more refined transmission cost defined in Sec. III-

A would help mitigate this issue and ensure these codebits

are used less often individually. One can also introduce a cut-

off on the codebit probability p(βi) term of the transmission

cost and not rely on codebits with high probability.

TABLE V

PRECISION/RECALL OF THE DECODED MESSAGES ON SYNTHETIC

TRAJECTORIES.

Trajectory Codeword Counts Precision Recall

1 β4β4 5 0.83 1.
2 β4β2 5 0.83 1.
3 β4β1 5 0.67 0.80
4 β4β7 5 0.71 1.
5 β2 5 0.83 1.
6 β1 5 0.71 1.
7 β8 5 0.67 0.80
8 β3 5 1. 1.
9 β7 5 0.83 1.
10 β8 5 0.63 1.

Mean 0.77 0.96

VI. CONCLUSION

We have presented a method for vision-based commu-

nication between robots in radio-denied environments. The

method allows a robot to encode sequences of pose config-

urations (codebits) to convey a message. Our method uses

optimal variable-length prefix codes to encode these codebits

while minimizing the likelihood of false positive detection.

The following robot decodes the transmitted message by

using a pose estimation CNN. We demonstrate our technique

on synthetically generated tracking sequences with a mean

precision and recall of 0.96 and 0.91 respectively, and on real

data with 0.94 and 0.66. The system runs in real-time on the

Aqua robot underwater. We expect to use this technique in

our own work of underwater multi-robot convoying using the

Aqua robots to signal important messages and achieve more

robust tracking.
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