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Abstract—1In this paper we consider inter-robot commu-
nication in the context of joint activities. In particular, we
focus on convoying and passive communication for radio-denied
environments by using whole-body gestures to provide cues
regarding future actions. We develop a communication protocol
whereby information described by codewords is transmitted by
a series of actions executed by a swimming robot. These action
sequences are chosen to optimize robustness and transmission
duration given the observability, natural activity of the robot
and the frequency of different messages. Our approach uses a
convolutional network to make core observations of the pose
of the robot being tracked, which is sending messages. The
observer robot then uses an adaptation of classical decoding
methods to infer a message that is being transmitted. The
system is trained and validated using simulated data, tested
in the pool and is targeted for deployment in the open ocean.
QOur decoder achieves .94 precision and .66 recall on real footage
of robot gesture execution recorded in a swimming pool.

I. INTRODUCTION

We present a vision-based robot-to-robot communication
system that leverages the rich geometric information recov-
ered from 3D target tracking to unambiguously transmit
messages through gesturing. The communication protocol
relies on a robot executing a set of gestures that are in turn
decoded by another robot from their visual appearance.

Humans commonly use gestures in various situations to
communicate intent or issue commands when other forms of
communication are difficult. Some examples include aircraft
marshalling in aircraft ground handling, hand gesturing by
scuba divers or cyclists signalling their trajectory to drivers
and fellow cyclists. With the increased deployment of robots
in constrained environments and rise of robots with a variety
of non-compatible custom hardware, gesturing can be seen
as a suitable universal communication method adaptable to
many robotic setting.

The gestures we use, represented by a sequence of pose
configurations, are treated as codewords in a code which
accounts for different transmission costs associated with each
pose configuration. The code must be prefix-free [1], [2] to
ensure no codeword can be a prefix of another codeword,
avoiding ambiguity when decoding any message linearly. We
formulate a generic communication protocol and design it to
be applicable to any robotic setting where agents are capable
of executing different discernible pose configurations. In
this paper, we focus our application and experiments in an
underwater setting, where robot communication is naturally
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Fig. 1. An Aqua robot performing codeword (3432 in the pool with neutral
codebits 3, in between.

more constrained and other communication methods require
additional hardware.

We regress 3D orientation of the robot by training a CNN
exclusively on synthetic images using CAD renderings of
the robot in a synthetic underwater environment designed
in Unreal game development engine [3]. This approach
eliminates the need of labour-intensive manual labelling of
real underwater images and allows us to benefit from domain
randomization techniques [4] to robustify our model.

We validate our system on the Aqua family of amphibious
hexapod robots [5] shown in Fig. 1. Aquas are highly
manoeuvrable and rely on six actuated flippers to traverse
underwater environments. Navigation and gesturing are han-
dled by the robot’s 3D autopilot [6] which relies on an on-
board inertial measurement unit (IMU) and pressure sensor
to perform closed-loop control over requested depth, attitude
and thrust. Aqua’s controllers and sensor suite are operated
within the Robot Operating System (ROS) [7] framework.
Our visual tracker and decoder relies on images captured by
the front-facing RGB camera and runs at frame rate on the
robot’s laptop-grade dual-core Intel i3 CPU and Nvidia GPU
(Jetson TX2) [8].

We evaluate our system both in simulation using a
synthetic marine environment designed in a custom Aqua
simulator [9] built on Unreal and in a real underwater
context from both marine and pool settings. Our evaluation
demonstrates successful generalization of the synthetically
trained pose estimator to real images.

II. RELATED WORK

A. Visual Tracking

In our prior work, we have presented underwater tracking-
by-detection [10] systems that operated on both 2D bounding
box detection [11] and 3D pose estimation [12]. In both



approaches, detection of the target in every frame is inte-
grated using filtering. Other approaches to tracking include
the use of CNNs in 2D [13], sparse vectors [14] and other
techniques [15], typically based on 2D image models. As
in prior work [12], [16], we regress the orientation as a
quaternion using CNNs. Using 3D pose information offers
the distinct advantage of capturing the implicit intent of the
robot as it positions itself to take a certain heading. This
results in a better predicted motion model and thus more
robust tracking. The notion of tracking for motion prediction
and estimation has been considered in several contexts and
has many applications [17], [17]-[21].

To avoid the tedious task of data labelling, there has been
significant work on using synthetic images for training [4],
[22]-[25]. We take a similar approach by training our net-
work on synthetic data generated in Unreal. We also vary
backgrounds and textures in our synthetic data which helps
our learned model generalize to real images without needing
to train on them.

B. Robot Communication and Visual Communication

Several authors have considered the utility and nature of
gesture-based communications in robotics [26], [27]. There
has also been some prior work on allowing robots to commu-
nicate via body movement [28] or mutual observation [29],
[30]. In [31], gestures performed by a target robot are used
to communicate heading in a robot convoying setting. While
the robot behavior is important, a key aspect of this scheme
is specifically engineering a set of body markings (helical
drawings) for the robot that wishes to communicate. In
addition, the vocabulary that is encoded is very simple and
does not include any provision for error correction.

In marine environments, radio communications are often
impractical or impossible but several authors have examined
interesting alternatives [32]-[34]. In contrast, whole-body
motions and activities is widely employed in the animal
kingdom and has also inspired several robotics efforts [31],
[35]-[41]

While most of these methods rely on additional hardware,
our system benefits from RGB cameras, typically available
on most platforms. In an underwater setting, our method also
benefits from being diver-friendly as gesturing is much more
interpretable by divers already occupied with their current
dive plan.

C. Optimal Prefix-free Codes

Finding a minimal cost prefix-free code in which the en-
coding alphabet features r symbols of unequal letter costs is a
well-studied problem [42]-[44]. Such an encoding represents
a generalization of the classical Huffman coding problem [1]
of constructing a binary (r = 2) prefix code which minimizes
the expected transmission cost. The generalization relaxes the
binary requirement for the encoding alphabet and introduces
variable costs for each encoding character (codebit). This
is desirable when it is preferable to minimize the average
number of codebits and when codebits of the encoding
alphabet have a varied transmission cost such as in the

Morse-code alphabet {-, —}. In our setting, the variable cost
is also an excellent way of penalizing pose configurations
that are energy intensive, harder to reliably detect and more
ambiguous during day-to-day operation of the robot.

Karp [42] was the first to study the problem and proposed
an exponential time integer linear programming solution.
Several methods to reduce algorithm run-time of designing
optimal prefix-free codes with unequal letter costs have been
proposed but all impose constraints on the problem. In [44],
the authors restrict the letter costs to a binary set. In [43], the
authors propose a dynamic programming algorithm to build
the tree in a top-down fashion, where the costs are integers.
We implement the latter algorithm in our method due to its
flexibility with the cost requirements. The algorithm runs in
polynomial time but it is still unclear whether the general
problem with non-integer costs is polynomial-time solvable

or N'P-hard.

III. METHOD

Our method consists of two main components: 1) an
optimal prefix-free encoding of poses where each codebit
corresponds to an orientation bin with a defined transmission
cost and 2) a visual decoder which relies on a CNN-based
orientation regressor to detect the 3D orientation of the robot
to in turn decode the codeword.

A. Optimal Prefix-Free Encoding of Poses

We consider the problem of efficiently encoding a set
of messages based on robot pose configurations. These
messages can include urgent announcements, commands, and
parameters to be passed between robots deployed in the field
on a collaborative task. An example list of messages are:

« HELP o START_MAPPING

« DANGER « GO_TO_DIVER_X

« LOW_BATTERY « DESCEND_X_METERS
o« U_.TURN o STOP

Let n be the number of messages we wish to encode and
communicate using an encoding alphabet ¥ = {f1, ..., 5}
which consists of r codebits. This set of codebits or alphabet
corresponds to the set of pose configurations the robot can
perform.

Each codebit 3; is associated with a fransmission cost
¢; = T(B;) and a codeword cw = {f;, Bi,.--Pi, } - a list
of codebits from . A codeword has a transmission cost
equivalent to the sum of the costs of its individual codebits:

k
T(cw) = Z ci; (1
j=1

A code W is defined as the set of codewords cw1, ..., cw,
and is considered prefix-free if no codeword cw € W is a
prefix of another. For example, a code containing codewords
{B1, P1P4, B3B3} is not prefix-free. We can then define
the cost of a code as the expected transmission cost of a
codeword:

cw) = Z T(cw;) - p; 2)

i<n



where p; is defined as the probability of transmitting
message 1.
A list of definitions is included here for reference:

o Codebit j;: a particular pose configuration.
« Alphabet >: a set of codebits.
e Codeword cw;: an ordered list of codebits.
e Code W: a set of codewords.

In order to choose codebits of the encoding alphabet 3,
the orientation space of the robot is binned. The roll, pitch
and yaw axes are each discretized into bins of size 67, 9;,
¢ respectively. We then take the combinations of the bins
from each axis to represent the codebits. Individual axes can
be ignored as needed depending on the robot capabilities. In
this paper, we choose to forego the roll axis to maintain a
smaller number of codebits which is sufficient for our needs.
For an example list of codebits, please see Tab. I.

TABLE I
EXAMPLE LIST OF 9 CODEBITS GENERATED FROM BINNING OF THE YAW
AND PITCH AXES WITH 6, = 6, = 60° AND ASSOCIATED ANGLES.

[ Codebit Roll (°) Pitch (°) Yaw () ||

B 0 60 60
B2 0 0 -60
Bs 0 60 60
Ba 0 -60 0

Bs 0 0 0

Be 0 60 0

Bz 0 -60 60
Bs 0 0 60
Bo 0 60 60

To assign codewords to messages we sort the messages by
their probability, and assign higher probability messages to
codewords with lower transmission cost.

We define a transmission cost function that is based on
three constraints:

T(Bi) = p(B:) - €(Bi) - d(B;) 3)

where we define p, € and d as:

o p(B;): the probability of a codebit in regular operation.
This value allows us to ensure high probability codebits
are penalized and not used in our code so that gestures
are not confused with regular operation. In order to
obtain this probability distribution, we run our pose
estimator on footage of the robot in operation and
extract the histogram of orientation bins.

e €(f3;): the normalized mean error of the orientation
regressor when executed on the corresponding bin of
the codebit. This helps avoid using difficult to detect
codebits in our encoding.

« d(B;): an application-specific value which can represent
the time it takes to execute a codebit, or other engineer-
ing restrictions in maintaining a certain codebit, also
normalized to [0,1]. This penalizes gestures that are
difficult to execute.

where the input to each of these measures is the bin that cor-
responds to (3; as defined previously. Based on the calculated
transmission cost, a cut-off could be used to eliminate certain
codebits from the encoding alphabet. A histogram showing

the probability of codebits in regular operation is presented
in Fig.
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Fig. 2. A histogram showing the codebits probabilities captured from 5
minutes of footage of regular operation of the robot. We discourage the
use of high probability codebits in message encoding to prevent the false
detection of gestures during regular operation.

Given our list of codebits and their associated costs, we
implement the optimal prefix-free dynamic programming
algorithm presented by [43] to obtain the code-tree that
minimizes the total cost of the prefix-free code. An example
code tree is presented in Fig. 3.

s;4

B4p2 || B4p3 |B4l39|
B4B7 |l34|31|

Fig. 3. An example optimal prefix-free code tree using the codebits from
Tab. I with » = 8 codebits and n = 15 messages. The leaves of the
tree (highlighted in gray) represent the final codewords that make up the
code. The cost associated with each codebit is defined in the following list:
c = [1,1,1,2,2,2,3,3] for codebits B4, B, s, B2, B3, B3, B, B1, Br]
respectively. The costs are the equivalent of the depth level of the tree.
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B. Visual Decoder

Using the codewords from the tree generated in Sec. III-A,
we can now execute each encoded message on the robot. In
order to simplify the decoding algorithm, we insert a neutral
codebit 3, between every codebit in a codeword. This serves
as a marker to register when every codebit is executed. For
example, codeword {5132} becomes {515.0208.}. Fig. 1
shows Aqua executing the codeword {545,020}

In order to get an orientation estimate, we rely on our prior
work in [12] and train a (CNN) as an orientation regressor on
monocular images of a model of the Aqua generated syntheti-
cally in Unreal. A description of our training and test datasets
are presented in Sec. IV. This regressor is initialized with the
VGG16 architecture [45] which has been shown to perform
well on visual tasks. We use VGG weights pre-trained on
ImageNet and augment the network for orientation regression
of a quaternion. The network outputs the orientation estimate
q = (w,x,y,z) of the robot with respect to the observing
camera. The loss function is defined as the L2-norm of the
orientation quaternion:
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Our network generalizes to real images without ever
needing to train on them, foregoing the need for any human
labelling of images. During tracking, we apply a Kalman-
Filter tracker on the observer to integrate the orientation
estimate.

To account for pose estimation errors and viewpoint vari-
ations, the codebits are detected if they are within a bin of
the target codebit angles with the bin limits offset from the
center by [—20, 20].

In order to decode an executed codeword, we obtain the
filtered pose estimate on every frame and bin the orientation
estimate. We then check if the bin corresponds to any
codebits of the encoding alphabet. If we have detected a valid
codebit that is not identical to the previous detected ones, we
check if this codebit j3; is a prefix of any of our codewords. If
we are already tracking a candidate sub-codeword cand;_1,
we instead check if cand;, = cand;—1 U B; is a prefix of a
codeword in code W. If it is a codeword in W, we have
detected a message.

The prefix-free nature of the code means that codewords
are non-ambiguous and the transmission costs used to gener-
ate the code help to ensure that codewords are not confused
with regular pose configurations that occur on a normal
execution of the robot.

Note that this algorithm assumes the observer is mostly
following the target and looking at it from a limited view-
point window. The observer can have translation offsets but
generally assumes the target is executing messages with a
local frame of reference that is relative to its camera. To
better handle smaller viewpoint variations expected from any
moving observer, we update the codebit bin centers according
to the latest neutral codebit detected and its offset from its
original neutral codebit center up to [—10°,10°].

IV. DATASET
A. Pose Estimation

Our pose estimation dataset contains a mixture of synthetic
images generated with a custom Aqua simulator [9] built
on Unreal and real, manually annotated underwater images
collected during field trials at McGill University’s Bellairs
Research Institute in Barbados. We opt to restrict the training
data to exclusively rely on synthetic images and do not
include any real images in our training process. As seen
in [12], using only photo-realistic synthetic images for our
training set reduces the need for tedious manual annotation
while resulting in a trained network that can accurately
generalize to real data.

1) Unreal synthetic dataset: The synthetic dataset used to
train our pose estimator consists of 50,000 images created
in Unreal with 45 variations in lighting angles and intensities
on 4 sets of backgrounds, including a simulated custom-
designed underwater world, a simulated pool, a fixed plane
populated with random textures, and a white background.

The Unreal Engine is one of the most faithful photoreal-
istic simulation engines available. The simulated robot is
displayed with 2 different robot chassis materials (matte and
shiny) as well as 2 attachment configurations, one with and
one without a downward facing camera attachment.

The simulated environments used in this paper were identi-
cal to those used in [12], utilizing professionally made photo-
scanned assets and textures to increase realism [46].

The Aqua CAD model within each image is first randomly
placed within the camera frame between [0.5m, 2.0m| away
from the simulated camera, then given a random orientation
within [—85°,85°] on the three rotation axes (roll, pitch,
yaw). Samples from the synthetic training data are presented
in Fig. 4.

Fig. 4. Image samples from synthetic training data generated using Unreal.

2) Real underwater dataset: Our test set is comprised
of 1000 real images collected during underwater field trials
off the West coast of Barbados. The images are captured
using a following robot’s on-board cameras and diver-held
cameras at variable distances and angles, mainly looking at
the back of the Aqua. Using a custom-built annotator, we
manually annotated the 6-DoF pose of the robot in each of
these images, which allows the user to mark keypoints on the
robot assigned from the CAD model. The human annotator
then iteratively fits a wireframe to the robot using its known
dimensions.

B. Visual Encoding

To evaluate our visual encoder, we prepare a dataset
containing the Aqua executing codewords in both real pool
trials and in the Aqua simulator [9]. To create this testing
dataset, we record both generated synthetic videos of a sim-
ulated robot and real videos of the physical robot executing
the motions that correspond to a subset of the codewords
generated in Fig. 3.

1) Simulated gestures using Unreal engine: The synthetic
testing data is comprised of recordings of the simulated robot
executing motions for each of the codewords listed in Tab.
IIT within the realistic simulated underwater environment,
totalling 50 recordings per codeword.

To execute the motions, a controller within the Aqua
simulator is fed a target orientation offset, fg,, corresponding
to a codebit along with the time allowed, At, for the Aqua
to reach the target orientation.



Once the target is reached, there is a pause for approxi-
mately 1.5 seconds before returning to the neutral orientation
and continuing onto the next codebit or codeword. This
simple, idealized dynamics model gives a solid baseline for
comparing real world examples.

Variations to each execution of a codeword include a) a
random starting orientation within the simulated underwater
environment with bounds of [—10°, 10°] for roll, [—20°,
20°] for pitch, and [—180°, 180°] for yaw, b) random
additions to the target orientation for each axis with bounds
of [—5°, 5°], and c) changes in speed of the robot through
random scaling of the amount of time allotted for each
motion, normally 2 seconds, with bounds of [.8, 1.2]. Each
random variable is chosen with uniform distribution.

Images of the synthetic Aqua performing a particular
codebit in Unreal are presented in Fig. 5.

Fig. 5. Synthetic Aqua robot positioned according to codebit 31 (left) and
Ba (right).

2) Real underwater pool gestures: The testing dataset
used to evaluate visual encoding in a real world setting
consists of, on average, 10 recorded examples of the Aqua
executing gestures in the McGill University pool for each of
the codewords listed in Table IV.

In order to execute the gestures corresponding to codebits
on the physical Aqua, a custom PID autopilot controller [6]
is utilized. Given a target orientation offset for a chosen
codebit, the autopilot controller causes the Aqua to rotate,
stopping when the IMU reading indicates the Aqua is within
5 degrees of the target angles. To prevent the Aqua from
drifting and accidentally appearing to execute an undesired
motion, the controller maintains the neutral orientation for 3
seconds before a new motion is attempted, where the neutral
orientation is considered to be the orientation at which the
Aqua starts executing a gesture.

3) Unreal trajectories: An important evaluation of our
method involves decoding messages from a robot as it
moves around its environment in regular operation. This
evaluation ensures that messages aren’t missed while per-
forming basic navigation and ensures the decoder’s ability to
discern regular operation from messaging. In order to test our
visual decoder’s performance in simulation, we generate a
dataset of 10 synthetic videos showcasing the Aqua executing
gestures intermittently as it explores the custom-designed
underwater world described in Sec. IV-A.1. Each recording
features 1 codeword repeated 5 times at random over the
course of approximately 2 minutes of navigation.

To generate this data, we place a simulated camera approx-

imately 2 meters behind a simulated Aqua model. Default
settings in Unreal Engine cause the camera to translate
and rotate perfectly with the object it is following, so we
introduce artificial lag to the camera’s rotation to simulate
the delay that would occur in a real trial as either a human
or robot attempts to follow a gesturing Aqua. The videos
recorded by the simulated camera are stored in a ROS bag
along with ground truth information, including the 6-DoF
pose and bounding box of the target Aqua and the pose of
the camera.

V. EXPERIMENTAL RESULTS

Fig. 6. Pair of Aqua robots following one another at sea and positioned
for gesture-based communication.

A. Pose Estimation

Our orientation regression network is evaluated in isolation
by evaluating mean angle errors on a real underwater test
set. A table summarizing the angle errors from prior work
in [12] is reproduced here in Tab. II in order to showcase
the orientation regression performance.

TABLE 1I
BASE METRICS EVALUATED OVER THE REAL UNDERWATER TEST SET
COLLECTED IN BARBADOS AS PER SEC. IV-A.2.

Mean Mean Roll Er- | Mean Pitch | Mean Yaw
Rotation ror Error Error
Error

[ 23.51° [ 7.29° | 12.05° | 5.87° \

B. Static Visual Decoding

In order to simplify our deployment and encoding al-
phabet, we forego the roll axis and generate codebits by
using 3 bins with 6, = 60° and 6, = 60°, restricting the
orientation space to {—90°,90°}. The corresponding codebit
list is shown in Tab. I. We assign the neutral codebit to be
Bz = Bs.

To derive the transmission cost of each codebit, we plot
the probability of codebits in Fig. 2 and a randomly sampled
subset of angle errors relative to their respective angle value
in Fig. 7.

The dynamic programming algorithm we implement from
[43] optimally encodes n messages in O(n®+?) time
and O(n®*1) space where C is the highest integer cost
assigned to a codebit. We restrict our evaluation on a
simpler cost list ¢ = [1,1,1,2,2,2,3,3] for codebits
[B4, Bs, Bs, B2, B3, Bo, b1, Br] respectively. This cost list is
an integer cost list which is reflective of the order of the
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Fig. 7. Angle errors vs angle values for yaw/pitch/roll from a subset of
the test set. This plot was first presented in [12].

transmission costs as opposed to their values. We generate
the optimal prefix-free code-tree for r = 8 and n = 15, as
shown in Fig. 3.

To measure our decoding performance, we evaluate our
decoder on the Unreal and real underwater gestures datasets
described in Sec. IV. We generate confusion matrices for
each dataset and summarize precision and recall values in

the matrices in Tab. III and Tab. IV.
TABLE III

CONFUSION MATRIX FOR CODEWORDS EXECUTED IN UNREAL.
CLASS-SPECIFIC RECALL VALUES ARE HIGHLIGHTED IN GREY.

BaPs BaB2 Bafr Pafr B2 B1 Bz  Pr | FNs
BaBa 0.94 0. 0. 0. 0. 0. 0. 0. | o006
BaB2 0.04 082 0. 0. 008 0. 0. 0. | 006
BaB1 0.02 0.06 | 0.84 0. 0. 004 0. 0. | 0.04
BaBr 0. 0. 0. 098 0. 0. 0. 002 0.
B2 0. 0. 0. 0. 094 0. 0. 0. | 0.06
B1 0. 0. 0. 0. 0.04 086 0. 0. | 0.10
B3 0. 0. 0. 0. 0. 0. 1. 0. |o.
B 0. 0. 0. 0. 0. 0. 0. 090 0.10
Precision| 0.94 093 1.00 1.00 089 096 1.00 098

On synthetic data, the visual decoder achieves a mean
precision of 0.96 and mean recall of 0.91. Note that the
requirement for the robot to return to a neutral codebit 3,
results in some missed detections of certain messages, as can
be seen in the False negatives (FNs) column.

TABLE IV
CONFUSION MATRIX FOR CODEWORDS EXECUTED IN THE POOL.
CLASS-SPECIFIC RECALL VALUES ARE HIGHLIGHTED IN GREY.

BaBs BaB2 B2 B Bs  Ps | FNs
BaBa 0.67 0. 0. 0. 0. 0.17 | 0.17
BaB2 0. 0.67 0.17 0. 0. 0. 0.17
B2 0. 0. 0.73 0. 0. 0. 0.27
B1 0. 0. 0.38 025 0. 0. 0.38
Be 0. 0. 0. 0. 0.83 0. 0.17
Bs 0. 0. 0. 0. 0. 0.82| 0.18
Precision] 1.00 1.00 0.67 1.00 1.00 095

On real data, our visual decoder achieves a mean precision
of 0.94 and mean recall of 0.66. An explanation for the
particularly worse performance of the system in the real pool
on codebit 3 is the imperfect execution of it by the physical
robot. Codebit 3; featuring both yaw and pitch variations
were found more likely to overshoot and undershoot on pitch.
Fine-tuning of the autopilot controller for such tasks can help
mitigate these errors. Most notably, codebit 3; executions
tend to not pitch enough and were at times more closely

executed as codebit (. Slight overshoot in the yaw axis
also lead to more false negatives than expected as the robot
skipped the neutral codebit at times which is supposed to
signal the end or transition of a codeword. These errors in
executions are typical of real systems deployed in the field.
A way to tackle these limitations is to use codebits that are
more spread out in the orientation space of the robot to allow
some room for error.

C. Visual Decoding on Swimming Trajectories

We evaluate our system on synthetic swimming trajecto-
ries of the Aqua in order to better understand the performance
of the visual decoder in a deployment setting. The dataset,
described in Sec. IV-B.3, consists of typical swimming
trajectories with messages communicated at random times.
The goal of this evaluation is to ensure the reliability of
the code even when the robot performs a variety of swim-
ming poses. We summarize the precision/recall values on
these trajectories in Tab. V. Common false negatives are
codebits B and Bg which represent basic left and right yaw
configurations. As shown in Fig. 2, these codebits have a
high probability of occurrence in regular deployment and
our simplified cost structure did not fully capture this cost.
Using the more refined transmission cost defined in Sec. III-
A would help mitigate this issue and ensure these codebits
are used less often individually. One can also introduce a cut-
off on the codebit probability p(/3;) term of the transmission
cost and not rely on codebits with high probability.

TABLE V
PRECISION/RECALL OF THE DECODED MESSAGES ON SYNTHETIC
TRAJECTORIES.

Trajectory | Codeword Counts Precision Recall

1 BaBa 5 0.83 I.

2 B4B2 5 0.83 1.

3 BaB1 5 0.67 0.80

4 BaB7 5 0.71 1.

5 B2 5 0.83 1.

6 51 5 0.71 1.

7 Bs 5 0.67 0.80

8 B3 5 1. 1.

9 B7 5 0.83 1.

10 Bs 5 0.63 1.
Mean 0.77 0.96

VI. CONCLUSION

We have presented a method for vision-based commu-
nication between robots in radio-denied environments. The
method allows a robot to encode sequences of pose config-
urations (codebits) to convey a message. Our method uses
optimal variable-length prefix codes to encode these codebits
while minimizing the likelihood of false positive detection.
The following robot decodes the transmitted message by
using a pose estimation CNN. We demonstrate our technique
on synthetically generated tracking sequences with a mean
precision and recall of 0.96 and 0.91 respectively, and on real
data with 0.94 and 0.66. The system runs in real-time on the
Aqua robot underwater. We expect to use this technique in
our own work of underwater multi-robot convoying using the
Aqua robots to signal important messages and achieve more
robust tracking.
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