
View-Invariant Loop Closure with Oriented Semantic Landmarks

Jimmy Li1, Karim Koreitem1, David Meger1 and Gregory Dudek1

Abstract— Recent work on semantic simultaneous localiza-
tion and mapping (SLAM) have shown the utility of natural
objects as landmarks for improving localization accuracy and
robustness. In this paper we present a monocular semantic
SLAM system that uses object identity and inter-object ge-
ometry for view-invariant loop detection and drift correction.
Our system’s ability to recognize an area of the scene even
under large changes in viewing direction allows it to surpass
the mapping accuracy of ORB-SLAM, which uses only local
appearance-based features that are not robust to large view-
point changes. Experiments on real indoor scenes show that our
method achieves mean drift reduction of 70% when compared
directly to ORB-SLAM. Additionally, we propose a method for
object orientation estimation, where we leverage the tracked
pose of a moving camera under the SLAM setting to overcome
ambiguities caused by object symmetry. This allows our SLAM
system to produce geometrically detailed semantic maps with
object orientation, translation, and scale.

I. INTRODUCTION

In this paper we present an approach to mapping and local-
ization that uses categorical objects as the key mapping prim-
itive, allowing scene correspondence despite large changes
in viewpoint, appearance or even scene configuration. We
focus primarily on loop closure, a key aspect of simultaneous
localization and mapping (SLAM) that leverages repeated
observations of landmarks to correct for drift, which is the
accumulation of errors in the map over time. To recognize
previously-seen landmarks, traditional visual SLAM methods
use dense low-level features for accurate alignment. These
low-level features are not, however, invariant to large view-
point changes (> 30◦) [1], and cannot be used to reliably
detect a loop when seeing the same area again from a very
different viewpoint, as we will show in this paper.

To achieve greater viewpoint robustness, we use objects
as high-level semantic landmarks, which can be detected
with modern deepnet-based object detectors regardless of
viewpoint [2]. Using only RGB images taken by a monocular
camera, our SLAM system builds a semantically meaningful
map containing the pose of objects, and uses their identity
and geometry to detect and correct large loops. Fig. 1 shows
an example where ORB-SLAM [3], a state-of-the-art SLAM
method based on local appearance-based features, fails to
loop close due to changes in viewpoint, whereas our method
loop closes using a cell phone, a cup, and a bowl, thereby
reducing drift by 80.4%.

*This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada, and the NSERC Canadian Robotics
Network (NCRN)

1The authors are affiliated with the Mobile Robotics Lab, the Center for
Intelligent Machines (CIM), and the School of Computer Science at McGill
University in Montréal, Canada. jimmyli, karimkor, dmeger,
dudek@cim.mcgill.ca

5 (cup)

6 (bowl)

4 (cell phone)

1 (cell phone)

3 (bowl)

2 (cup)

Camera pose
correction
Camera pose
correction Object

correspondence
Object
correspondence

5

6

4

1

3

2

Loop detection
with objects
Loop detection
with objects

Completed mapCompleted map
S

E
e

microwave

bottles bowl

bowl

cellphone

bowl

cup

Remote

ORB‐SLAM
trajectory

Our trajectory
80.4% less drift

Estimated camera poses

Fig. 1: View-invariant loop closure using objects. Top: the
same objects observed from two disparate viewpoints along
the camera trajectory. Middle: duplicate objects arising from
drift are matched (blue arrow), informing camera pose cor-
rection (purple arrow). Bottom: camera starts and ends at
the same position (S). ORB-SLAM estimates end position e,
whereas our method estimates E, which has 80.4% less drift.

We build on our prior work [1], in which we present our
semantic mapping algorithm, and demonstrate the utility of
object landmarks for view-invariant relocalization. We have
shown that given two separate maps of the same scene built
from two completely different viewpoints (up to 125◦ apart),
our system can use co-visible objects to reliably fuse the
maps and align all camera poses in a single reference frame.
This work expands on our prior work to leverage object
landmarks for loop closure. Whereas the relocalization task
assumes we are given two distinct maps containing possibly
overlapping landmarks, in loop closure we continuously
monitor for duplicate landmarks that arise due to drift, which
requires a different inference engine.

Additionally, we introduce an approach for object orienta-
tion estimation that leverages multiple views captured by a
moving camera. At the category level, many objects exhibit
symmetry, which makes orientation estimation difficult. Our

approach exploits the estimated camera motion to overcome
symmetric ambiguities. Compared to our prior work, which
aligns object landmarks with the current scene layout, the
ability to infer individual object orientation allows our system
to map larger environments, and to better integrate with
robotics tasks like manipulation that require fine-grained
geometry.

II. RELATED WORK

While traditional visual SLAM methods based on match-
ing local appearance-based features and image intensities
offer accurate mapping and localization [3]–[6], the map
representation that results lacks semantic information, and
localization is not robust to changes in illumination and
viewpoint [1], [7]. This has inspired SLAM methods that
use high-level objects as landmarks to address these issues.
The notion of using high-level features for mapping can
be traced back to Binford [8], and is used in mapping for
mobile robots by Galindo [9]. Several object representations
have been proposed in this context. Point [10] and quadric
[11], [12] representations are convenient for optimization
but are not well-suited to capture the physical extent of
common cuboidal objects (i.e. monitors, keyboards). Inspired
by the work of Bao et al. [13] and Meger et al. [14],
we represent objects as bounding cuboids that tightly fit
target objects. An effective modern realization of object-
based SLAM is the work of Bowman et al. who capitalize
on probabilistic optimization over visual and IMU data [10],
[15]. Our work, in contrast, focuses on the recognition of
scenes from drastically varying viewpoints using semantic
cues. While RGB-D sensing could enable more detailed
geometric reconstruction [16], [17], we opt to rely only
on the ubiquitous RGB camera, which makes our system
applicable to a wide range of hardware platforms.

Estimating object orientation from images is a well-studied
problem [18]–[20], but has commonly been treated as a
separate problem from SLAM. Inspired by Pillai et al. [21],
who have used SLAM to improve object recognition, we
leverage SLAM for multi-view orientation inference. This
allows us to disambiguate object symmetry and simplifies
the learning problem compared to prior work [18]. Unlike
existing instance-level methods [22], we are interested in
orientation estimation at the category level, which allows our
system to operate in previously unseen environments.

III. SLAM SYSTEM

A. Overview

Our SLAM system is based on the idea that local
appearance-based features (i.e. ORB [23]) are valuable for
accurately tracking the camera locally, but are not always
reliable over long trajectories since they are not robust to
large changes in viewing angle. Natural objects such as
common household items, on the other hand, are reliably
detectable across viewpoints, but in the absence of other
cues, are difficult to use since computing the precise location
of objects in the image plane is challenging. Modern object
detectors typically output coarse bounding boxes that roughly

RGB image
ORB-SLAM

camera pose
tracking

Expectation:
Associate object
landmarks with

detections

Maximization:
Update object

landmark poses

Object
bounding box

detection

Multi-view object
orientation
regression

Object-
based loop

closure

ORB-SLAM
feature-based
loop closure

Fig. 2: Flowchart of our semantic SLAM pipeline.

enclose the object. Thus, we adopt a hybrid approach, where
we use local appearance-based features to track the camera
locally, and we leverage the known camera poses to simplify
the inference of object poses in 3D space. Then, when
the system is later required to match across large baselines
for closing large loops or for relocalization, we use object
landmarks for view-invariant matching.

Having shown the utility of this approach for the relocal-
ization task in our prior work [1], in this paper we focus
on applying this strategy to loop closure. Loop identification
is achieved by matching the identity and geometric layout
of duplicate objects that arise due to camera pose drift.
By aligning duplicate landmarks, we also recover the pose
correction for the camera frames that observe these land-
marks. Graph-based non-linear optimization is then used to
distribute this correction across all the camera poses in the
trajectory. Fig. 2 contains a flowchart of the key components
of our SLAM pipeline, which we will discuss next.

B. Semantic Mapping

We provide a brief summary of the semantic mapping
framework presented in our prior work [1], which we use
for inferring the pose of object landmarks. Our mapping
system takes as input a sequence of RGB images, and
outputs the estimated camera trajectory, along with object
landmarks represented as bounding cuboids with 9 degrees
of freedom – translation (x, y, z), rotation (roll, pitch, yaw),
and scale (length, width, height). We build on the foundation
of ORB-SLAM [3], which tracks the pose of a moving
camera by matching ORB features [23] across image frames.
The estimated camera poses allow us to then optimize
bounding cuboid parameters to minimize reprojection errors
with respect to bounding box detections produced by Faster-
RCNN [2]. In this paper we improve our mapping system
by introducing a new method that allows for instance-level
object orientation regression. We discuss this in Section IV.

Since optimizing over all camera poses is expensive,
ORB-SLAM prunes away redundant image frames that see
similar feature points and operates over a sparse set of
keyframes, which we leverage for efficient object inference.
Upon keyframe insertion, we update the object landmarks
using expectation maximization (EM): 1) landmarks are
projected onto each keyframe and are matched with object
detections; 2) the matched detections are combined with
keyframe camera poses to triangulate and update landmark

poses. Detected bounding boxes that are not matched with
any existing landmark are used to initialize new landmarks.

C. Loop Detection

Executing our semantic mapping pipeline over long trajec-
tories typically leads to drift in the estimated camera poses,
which results in duplicate object landmarks being added
to our map. Since our method is based on ORB-SLAM,
we inherit its feature-based loop closure mechanism, which
allows our system to correct for drift if the same surfaces
are viewed again from a similar viewpoint. This leaves
much to be desired, however, since ORB-SLAM cannot cope
with the case where the same area is viewed again from a
drastically different viewpoint, which causes valuable loop
closure opportunities to be missed. So, we add a second loop
closure mechanism to our system that relies on the layout of
mapped objects for loop detection.

After each iteration of EM in the mapping process, we
identify the most recently mapped landmark as well as a
set of close by landmarks, and try to match them to earlier
landmarks. To measure the closeness of landmarks l and m,
which are seen in keyframe sets Kl and Km respectively,
we define the keyframe separation between l and m as

δ(l,m) = min
u∈Kl,w∈Km

|u− w| (1)

Here, u − w denotes the subtraction between keyframe
indices, which reflect the order in which keyframes are added
to the map. l and m are considered close if δ(l,m) < δK ,
where δK is chosen to be a small positive integer (∼ 5).

Let L be the set of landmarks containing the newest
landmark l and the landmarks close to l. We aim to identify
a subset of landmarks in L such that their spatial layout is
similar to that of another set of landmarks seen earlier in the
trajectory. If we manage to do so, then there is evidence that
a loop is present. By only considering the set of recently
mapped landmarks in L, we avoid having to consider all
landmarks in our map.

It has been shown that given 3 corresponding non-colinear
3D points measured in two different reference frames, it is
possible to recover the relative transformation between the
two systems [24]. Thus, we attempt to match 3 objects in
L with 3 objects taken from the rest of the map. Once the
match is established, we can use the relative transformation
to inform our loop correction. Since objects are sparse, we
exhaustively iterate over all possible matches and consider
each loop candidate in turn. Each candidate must pass the
following checks before it is accepted as a valid match.

D. Geometric Loop Verification

Let (l1, l2, l3) and (m1,m2,m3) be the two sets of objects
comprising the loop candidate we are currently considering,
where lu is matched with mu for u ∈ {1, 2, 3}. We reject
the candidate if it does not pass the following checks.

1) Matching proximity: Earlier we have defined keyframe
separation in Equation 1, and mentioned that two objects are
considered close if their keyframe separation is less than a
threshold δK . We require that there must not be a match lu ↔

mu such that lu and mu are close. This weeds out erroneous
matches between objects that are next to each other, which
could arise in cluttered scenes.

2) Object pose confidence: To prevent false positive
matches, we need to ensure that the matched objects are well-
localized, and are not instantiated based on spurious object
detections. This is crucial for the subsequent checks that
utilize object geometry. We require that each matched object
must have been observed by at least two keyframes with
viewing angles spanning at least θ degrees. Setting θ = 15◦

typically works well.
3) Object layout: Comparing the geometric layout of

the matched objects requires us to express all objects in a
common reference frame. Representing each object as a point
indicated by its translation, we first establish local coordinate
systems A and B based on (l1, l2, l3) and (m1,m2,m3)
respectively, and then compute a similarity transformation
consisting of a rotation R, translation t, and scaling s such
that any point pl in A can be mapped to the corresponding
position pm in B with pm = sR · pl + t. This can be
accomplished using the method of Horn [24]. We map l1, l2,
and l3 from A to B, while also scaling their width, length,
and height using s to account for any scale drift. We then
proceed to the following checks using object poses in B.

• Scale consistency: False object correspondences often
lead to an unreasonable scale factor s. Thus, we en-
sure that once l1, l2, and l3 have been scaled by s,
their length, width, and height are consistent with that
of m1, m2, and m3 respectively. Let wid(l), len(l),
and hei(l) denote the width, length, and height of l,
and let g(l) = max

(
wid(l), len(l), hei(l)

)
. For each

matching pair lu ↔ mu. We require that |g(lu) −
g(mu)|/min (g(lu), g(mu)) < τs.

• Translational consistency: Let t(l) denote the transla-
tion of object l. The distance between matched objects
lu and mu must not exceed a threshold τt. Since
monocular tracking does not provide absolute scale, we
use a scale-normalized distance and require ||t(lu) −
t(mu)||2/min

(
wid(lu), len(lu), hei(lu)

)
< τt.

• Rotational consistency: A failure case we have ob-
served in cluttered scenes is where translational consis-
tency is achieved, but the alignment requires objects to
be flipped upside down. Thus, we require the difference
in orientation between lu and mu must not exceed a
threshold τr, where the difference is measured accord-
ing to the metric we will present in Section IV-F.

4) Supporting Inliers: Having 3 well aligned object cor-
respondences is not always sufficient for recognizing a loop,
especially when dealing with repetitive objects such as
bottles that tend to form dense clusters. To identify additional
matching pairs, we make two copies of all object landmarks,
with one copy in coordinate system A and the second in B.
As before, we map both sets of landmarks into a common
coordinate system using the similarity transformation, and
then accumulate pairs of landmarks that pass all of the
aforementioned checks. We refer to these pairs as inliers.

(a) Cell phone (b) Remote

(c) Keyboard left, right (d) Monitor front, back

Fig. 3: Many objects have similar appearance when viewed
from different orientations, causing our orientation regressor
to diverge during training.

While we could directly threshold the number of inliers,
this does not take into account the frequency of each object
category. Instead, we compute a weighted count of inliers,
which we formulate as

C =
∑

i∈inliers

wlab(i) (2)

where lab(i) denotes the category label of the objects in
the inlier pair, and wα is the weight of category α. A
lower weight is used for higher frequency categories. The
weighted inlier count C of an acceptable loop candidate
must surpass a threshold τi. The tuning of these parameters
depends on the types of objects used and their frequencies
in the environment.

5) Inlier Separation: In situations where multiple sets of
objects in the environment have similar geometric layout,
the detected loop may become ambiguous. Suppose we are
presented with multiple loop candidates sorted in descending
order by their weighted inlier count. If the inlier count of
the first candidate exceeds that of the second candidate by
τg , then we accept the first candidate and use it to perform
a loop correction. Otherwise, we interrupt the loop closure
operation and wait for a less ambiguous candidate.

E. Loop Correction

ORB-SLAM’s loop closure mechanism relies on distribut-
ing the loop error along the essential graph, which is a
spanning tree of the co-visibility graph, in which keyframe
vertices are connected based on co-visibility of ORB fea-
tures. This approach is more efficient than operating over
all images. Given an accepted loop candidate, we apply the
same similarity transformation used for aligning the object
matches to the keyframe camera poses that observe the
landmarks l1, l2, and l3. We then run ORB-SLAM’s essential
graph optimizer to distribute this correction throughout all
the keyframes via non-linear least squares optimization.

Having corrected the keyframe poses, we proceed to
update our semantic map. For each object landmark, we take
one of the keyframes that observe it, and compute the relative
pose of the keyframe before and after the update. We apply
the same relative transformation to update the landmark. We

Fig. 4: Separate orientation regressor trained for each parti-
tion of the top viewing sphere to eliminate ambiguity.

then run an EM step to fine tune all the landmark poses. Note
that the object pair in each loop candidate inlier are now
duplicates, and so we drop one landmark from each pair.
Additionally, there may be objects that did not contribute
to loop closure due to incorrect pose, but whose poses
are improved as mapping continues after loop correction.
Thus, we perform non-maximum suppression to remove
redundant objects as they arise, by applying the identity,
scale, translational and rotational consistency checks.

IV. ORIENTATION REGRESSION

A. Overview

This section describes our approach for estimating the
orientation of object landmarks, which we use in our SLAM
system. A key challenge that arises when training an orien-
tation regressor for typical household objects is symmetry.
Fig. 3 shows examples where objects exhibit similar appear-
ances when observed from different viewpoints. This usually
causes the learner to diverge during training, and motivates
our proposed multi-view inference. We focus primarily on
addressing reflectional symmetry shown in Fig. 3 and briefly
discuss the simpler case of cylindrical symmetry.

B. Multi-view Orientation Inference

To cope with reflectional symmetry in cuboidal objects,
we start by dividing the viewing sphere into partitions, such
that no two viewing directions in each partition captures a
similar image. Fig. 4 shows one possible partitioning into
four quadrants. The bottom half of the sphere is omitted
since we assume the camera will be held at roughly eye-level.
We train a separate orientation regressor for each partition.
Details regarding training are provided in Section IV-D.

Suppose there are n orientation regressors that correspond
to n partitions. Each time the object is seen by the moving
camera, we use all n regressors to estimate an orientation,
giving us Q1

i , ...Q
n
i for each camera pose i. Assume that

camera pose estimates are given by our SLAM system, and
let i and j be any two camera poses that observe the object.
We can identify the correct object orientations Q∗i and Q∗j
seen from i and j respectively with

Q∗i , Q
∗
j = argmin

Q∗
i∈{Q

1
i ...Q

n
i },

Q∗
j∈{Q

1
j ...Q

n
j }

∆(Tj→i(Q
∗
j), Q

∗
i) (3)

where Tj→i transforms Q∗j to be in camera i’s reference
frame and ∆ computes the relative angle between two
orientations. The resulting Q∗i , Q

∗
j are consistent with the

estimated camera motion. Typically, each object is seen from

Fig. 5: Examples of synthetically rendered training data for
our orientation regressor.

more than two camera poses, in which case we use the pair
of camera poses that differ the most in their global viewing
direction. Our experiments show that this approach works
well in practice, since using the regressor trained on one
partition to process an image taken in a different partition
tends to lead to inconsistencies with the camera motion.

When integrated with our SLAM pipeline, orientation re-
gressors operate on image patches enclosed by object bound-
ing box detections. Thus, estimated orientations Q1

i , ...Q
n
i are

only accurate with respect to the local patch. We follow the
approach of Mousavian et al. and use the angle of the ray
through the bounding box center to correct the orientations
so they are in the camera’s frame of reference [25].

C. Reducing Regressors

While the formulation we have presented is valid for the
general case, we can reduce the number of orientation regres-
sors if we only aim to compute a tightly fitting bounding
cuboid. For the example in Fig. 4, we could consolidate
partitions 2 and 4, as well as partitions 1 and 3. We could
then train our orientation regressor to ignore any features that
distinguish the front and back of the monitor. Furthermore,
because the monitor exhibits reflectional symmetry, any
image taken in partition 2/4 is similar to a flipped image
taken in partition 1/3. Thus, we could use a single regressor
to output two orientations based on the original image and a
flipped image. We use these simplifications when dealing
with cuboidal objects, including monitor, keyboard, cell
phone, remote, and microwave, which allows to estimate
orientation up to a 180◦ yaw.

D. Training

The convolutional network used for orientation regression
is described in our prior work [26], where it is used to
estimate the orientation of a mobile robot. The network
outputs a unit quaternion q = (w, x, y, z) given an image.
Following the methodology of domain randomization [27],
we generate synthetic training data by rendering CAD mod-
els of objects taken from ShapeNet [28] using a variety of
lighting conditions. We use a random patch taken from the
Pascal dataset [29] as the background for each rendering.
Examples of training data are shown in Fig. 5.

E. Cylindrical Objects

For objects with cylindrical symmetry, we simply train our
orientation regressor to output a 3-dimensional unit vector
indicating the up direction of the object. Since our convo-
lutional network architecture is not specific to quaternions,
it can be readily adapted to output a 3-dimensional vector.
When determining the orientation of bounding cuboids for a

cylindrical object we need only to ensure that its up direction
is properly aligned. The bounding cuboid thus loses one
degree of rotational freedom.

F. Comparing Orientations

Our SLAM pipeline compares the orientation between
objects of the same category as part of its loop de-
tection mechanism. For cuboidal objects, we determine
the orientation up to a 180◦ yaw, so given the rota-
tions Qi and Qj of two cuboidal objects, we output
min

(
∆(Qi, Qj),∆(Qi, RπQj)

)
, where Rπ applies a 180◦

yaw to Qj . For two cylindrical objects, we output the angle
between their up vectors.

V. EXPERIMENTS

A. Loop Closure

Existing visual SLAM datasets for evaluating loop closure
typically allow the camera to re-image the same surfaces
without large changes in viewpoint. The TUM dataset [30],
for instance, has this property, and so our method does
not significantly enhance mapping accuracy. To better gauge
the benefit of our system, we collect our own RGB video
sequences, where the camera is allowed to re-image the same
areas of the scene, but not from similar viewpoints.

We present our result on all 7 sequences we collect – one
is shown in Fig. 1 and the rest in Fig. 6. All data are collected
indoors, except for the bottom right sequence in Fig. 6,
in which the camera starts in a kitchen, goes outside the
building, circles around the block, re-enters through the front
door, and revisits the kitchen. Our system uses 5 cuboidal
objects (monitor, keyboard, cell phone, remote, microwave)
and 4 cylindrical objects (cup, bottle, bowl, potted plant) for
semantic mapping and loop closure.

We compare our semantic SLAM system with ORB-
SLAM. Each trajectory is collected such that the camera
starts and ends at the same position, which allows us to
gauge drift via the discrepancy in the estimated start and
end camera poses. A short video segment with translational
camera motion precedes each sequence to allow ORB-SLAM
to initialize. We save the state of the system just before
performing an object-based loop correction, so that we
can later resume the run with object-based loop correction
disabled to measure the performance of ORB-SLAM. This
approach ensures both methods initialize with the same scale.
We report our method’s percentage reduction in drift relative
to ORB-SLAM’s drift, defined as

||E − S||2 − ||e− S||2
||e− S||2

· 100 (4)

where S is the common starting camera translation, E is our
method’s estimated end translation, and e is ORB-SLAM’s
estimated end translation. Since ORB-SLAM only maintains
the pose of a sparse network of keyframes, for both methods
we enable ORB-SLAM’s relocalization mode after mapping
is completed and input the start and end images to obtain
their corresponding camera poses.

bottles

potted
plant

bowl

bowl

bowl

potted
plant

bottles

bottles

cups
bottles

cups

potted
plant cup

cell phone

cell phone

potted
plantcup

cups
cups

keyboard

keyboard

cup
cup

microwavepotted
plant

potted
plant

microwave

cup
cup

cup

monitors
monitors

cup

S

e

81.6% less drift 92.5% less drift

85.7% less
drift

63.6% less drift

55.8% less drift30.6% less drift

E

S

e

E
S

e

E
S

e

E

S

e
E

S

e

E

bottle

bowl

potted plant
cup cell phone

keyboard
monitor
microwaveS Start position

E Our end position
e ORB-SLAM end position

Our trajectory
ORB-SLAM trajectory

remote

Fig. 6: We show six maps built by our semantic SLAM system, which uses object landmarks for view-invariant loop closure.
Images taken during the trajectory are shown with the objects involved in the loop correction labeled with bounding boxes.
Our estimated trajectory (red) is compared to that of ORB-SLAM (blue). The camera starts and ends at the same position
(S). ORB-SLAM estimates end position e, whereas our method estimates E. We achieve lower drift in all cases.

(a) Bad monitor detection (b) Erroneous monitor pose

Fig. 7: Spurious detections lead to poor object pose estimates.

Fig. 1 and 6 show that our method successfully loop closes
using objects and achieves a drift reduction compared to
ORB-SLAM in all cases, ranging from 30.6% to as high
as 92.5%. Table I shows the drift reduction for all seven
sequences, along with the mean (70.0%). ORB-SLAM is
unable to detect loops, causing drift to remain uncorrected.

B. False Detections

Our method is sensitive to the quality of object detection.
Fig. 7 shows an example where incorrect detections of the
monitor adversely affects the estimated object pose. These
false detections are intermittent, and in this case affects both
monitors shown. While our method manages to correctly
loop close for the trajectory from which this example is
taken, it does so using other better-localized objects in the
scene and is unable to leverage the monitors.

C. Orientation Estimation

We evaluate object orientation estimates produced by our
SLAM pipeline against human-labeled ground truth. For each
object in our trajectories, we record its orientation relative to

TABLE I: Drift reduction vs ORB-SLAM
Sequence Drift reduction (%)
living room 80.4
kitchen 1 81.6
bathroom 92.5
bedroom 85.7
computer lab 1 63.6
computer lab 2 30.6
kitchen 2 55.8
Mean 70.0

TABLE II: Orientation estimation error
Mean
(degrees)

Stdev
(degrees)

Count

Cuboidal objects 28.57 21.22 31
Cylindrical objects 15.78 8.58 65

the first keyframe that detects it, and ask a human annotator
to label its orientation relative to the same keyframe. We use
the tool of Xiang et al. [31], which allows the annotator
to align a CAD model to the object in the image. The
mean orientation error for cuboidal and cylindrical objects
are presented separately in Table II. Errors are computed
according to the metric described in Section IV-F.

VI. CONCLUSION

We have presented a SLAM system that builds semanti-
cally meaningful maps containing object landmarks, which
it exploits to robustly close loops under large viewpoint
variations. For future work we intend to experiment on longer
trajectories that span both indoor and outdoor environments,
and use a wider range of object categories. We also wish to
leverage more detailed observation models for objects, such
as object keypoint detection.

REFERENCES

[1] J. Li, D. Meger, and G. Dudek, “Semantic Mapping for View-
Invariant Relocalization,” in International Conference on Robotics and
Automation, 2019.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems, 2015.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[4] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, no. 6, pp. 1052–1067, 2007.

[5] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in International Symposium on Mixed and Augmented
Reality, 2007.

[6] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision,
2014.

[7] C. Valgren and A. J. Lilienthal, “Sift, surf and seasons: Long-term
outdoor localization using local features,” in European Conference on
Mobile Robots, 2007.

[8] D. J. Kriegman and T. O. Binford, “Generic models for robot naviga-
tion,” in International Conference on Robotics and Automation, 1988.

[9] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. A. Fernandez-
Madrigal, and J. Gonzalez, “Multi-hierarchical semantic maps for
mobile robotics,” in International Conference on Intelligent Robots
and Systems, 2005.

[10] S. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Probabilis-
tic data association for semantic slam,” in International Conference on
Robotics and Automation, 2017.

[11] L. Nicholson, M. Milford, and N. Sünderhauf, “Quadricslam: Dual
quadrics from object detections as landmarks in object-oriented slam,”
Robotics and Automation Letters, vol. 4, no. 1, pp. 1–8, 2018.

[12] M. Hosseinzadeh, K. Li, Y. Latif, and I. Reid, “Real-time monocular
object-model aware sparse slam,” in International Conference on
Robotics and Automation, 2019.

[13] S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese, “Semantic structure
from motion with points, regions, and objects,” in Conference on
Computer Vision and Pattern Recognition, 2012.

[14] D. Meger, C. Wojek, J. J. Little, and B. Schiele, “Explicit occlusion
reasoning for 3d object detection.” in British Machine Vision Confer-
ence, 2011.

[15] N. Atanasov, S. L. Bowman, K. Daniilidis, and G. J. Pappas, “A
unifying view of geometry, semantics, and data association in slam,”
in Proceedings of the International Joint Conference on Artificial
Intelligence, 2018.

[16] B. Mu, J. L. Shih-Yuan Liu, Liam Paull, and J. P. How, “Slam with
objects using a nonparametric pose graph,” in International Conference
on Intelligent Robots and Systems, 2016.

[17] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at
the level of objects,” in Conference on Computer Vision and Pattern
Recognition, 2013.

[18] A. Saxena, J. Driemeyer, and A. Y. Ng, “Learning 3-d object ori-
entation from images,” in International Conference on Robotics and
Automation, 2009.

[19] S. Suwajanakorn, N. Snavely, J. J. Tompson, and M. Norouzi, “Dis-
covery of latent 3d keypoints via end-to-end geometric reasoning,” in
Advances in Neural Information Processing Systems, 2018.

[20] J. Ku, A. D. Pon, and S. L. Waslander, “Monocular 3d object detection
leveraging accurate proposals and shape reconstruction,” in Conference
on Computer Vision and Pattern Recognition, 2019.

[21] S. Pillai and J. Leonard, “Monocular slam supported object recogni-
tion,” in Robotics: Science and Systems, 2015.

[22] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Robotics: Science and Systems, 2018.

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in International Conference on Computer
Vision, 2011.

[24] B. K. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Josa a, vol. 4, no. 4, pp. 629–642, 1987.

[25] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding
box estimation using deep learning and geometry,” in Conference on
Computer Vision and Pattern Recognition, 2017.

[26] K. Koreitem, J. Li, I. Karp, T. Manderson, F. Shkurti, and G. Dudek,
“Synthetically trained 3d visual tracker of underwater vehicles,” in
OCEANS, 2018.

[27] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in International Conference on Intelli-
gent Robots and Systems, 2017.

[28] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,”
International Journal of Computer Vision, vol. 88, no. 2, pp. 303–
338, June 2010.

[30] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in International
Conference on Intelligent Robots and Systems, 2012.

[31] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mottaghi,
L. Guibas, and S. Savarese, “Objectnet3d: A large scale database for
3d object recognition,” in European Conference on Computer Vision,
2016.

